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Preface

The modeling of atmospheric illumination and radiance as it a�ects Army
systems has had a long and curious history. One of the main aspects of this area
has been the lack of progress in solving some of the main di�culties in assessing
the inuence of clouds and hazes in complex geometries. The example of the
man hunting for keys beneath the street lamp comes to mind. He searched where
there was light, but his keys were lost someplace else. Often in the atmospheric
sciences we can fall victim to this temptation because the di�culty of some real
problems is beyond current theory and applications.

In this case, however, we believe that some light has been shed on the
area of three-dimensional modeling of radiances in cloud �elds. And while
this may sound esoteric, the issue should be of major concern to the Army
community. A large fraction of Army systems rely on direct line of sight (LOS)
optics for engaging, detecting, and/or tracking enemy activity. And since the
Army frequently operates beneath a cloud deck, it is highly likely that clouds
will impact the performance of Army systems. In particular, illumination
e�ects modify the ability of an observer to detect a target against a natural
background. Also, in the past the illumination and optical properties along lines
of sight had been treated as uniform, or, in the best models, assumed to have
simple scaling laws for use in slant-path evaluation techniques. But, in three-
dimensional modeling, the radiance �eld changes with position and direction
requiring path dependent LOS calculations. This allows what-if questions to be
asked concerning into-sun/out-of-the-sun scenarios and the evaluation of cloud
shadowing e�ects. Solar illumination also a�ects the energy loading of surfaces
for thermal signature calculations.

The Atmospheric Illumination Module (AIM) codes are designed to permit
analysis of surface illumination and volumetric radiance calculations within a
scattering/absorbing/emitting atmosphere beginning at the Earth's surface and
extending upward through the cloud-�lled portion of the troposphere. The
principal features of this set of models consist of a three-dimensional radiative
transfer model capable of treating thin to extremely thick media, a modeling
methodology for representing the Legendre expansion of the aerosol scattering
properties of cloud aerosols and hazes, and a visualization model for depicting
the appearances of clouds.

It is hoped the visualization model discussed herein will some day lead to the
real time use of the data sets produced by AIM in simulations of various systems.
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Executive Summary

Introduction

The Atmospheric Illumination Module (AIM) is designed to facilitate the

assessment of radiance in the atmosphere (surface through 4, 8, or 12 km).

Numerous Army systems employ passive electro-optical devices designed to

detect and acquire objects in their image �elds, both those directly illuminated

(visible) and those detectable through indirect e�ects due to solar loading. But

the atmosphere a�ects the appearance of viewed scenes both through spatial and

spectral modi�cations of the illumination pattern and through path transmission

and radiance modi�cations of the scene energy. In this series of codes, we

currently provide a means of visualizing and quantifying the e�ects of the

atmosphere at visible wavelengths.

Background

The primary impact of the atmosphere on target acquisition in the visible band

is contrast transmission. This depends on both the density of the medium

(a�ecting transmittance) and the inuence of illumination on atmospheric

constituents (a�ecting path radiance). The general expression

C =
C0

1 + Sg(T�1 � 1)
(1)

is often used, where C is the transmitted contrast, C0 is the initial contrast

at zero range, Sg is the sky-to-ground ratio, and T is the transmission. T =

exp(��R), where � is the wavelength-dependent extinction coe�cient and R

is the range to target. The sky-to-ground ratio is the ratio of the limiting

path radiance (often judged based on the brightness of the horizon sky) to the

brightness of the background terrain near the target.

While there are numerous complications that apply when using this equation,

as discussed in the main text, the primary point is that limiting path radiance,

terrain brightness, and an extinction coe�cient are necessary for any analysis

of atmospheric e�ects. Providing these quantities is the motivation behind the

AIM models.
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Overview

The body of this report explains the methods developed for producing the
volumetric radiances necessary to assess sky and terrain brightnesses. We
consider the means of generating suitable model inputs by converting liquid
water content information provided by the Air Force's Cloud Scene Simulation
Model (CSSM) into extinction coe�cient and scattering property data required
by the radiative transfer (RT) model.

Assessing brightness entails the RT modeling of a simulated atmospheric volume
in contact with the Earth's surface and extending several kilometers vertically
to incorporate typical cloud layers for surface shadow calculation purposes. The
scenario volume is extended horizontally to treat a volume large enough to be
signi�cant for line of sight (LOS) engagements (around 8�8 km2).

The RT model developed here features techniques for treating dense clouds
within a Discrete Ordinates Method (DOM) paradigm. This is accomplished by
altering the traditional DOM technique. The traditional technique emphasizes
cell-centered calculations and extrapolations to cell-wall values. The modi�ed
technique determines cell-wall-averaged radiances and extrapolates results to
cell-volume-averaged radiances for purposes of calculating volumetric di�use
scattering e�ects. After these volume-based methods were developed, analysis
showed that energy was being lost due to the single-scattering assumption. To
compensate, a surface-based scattering event has been introduced, based on a
volumetric energy accounting calculation. Validations of the RT code have been
accomplished through comparison with Monte Carlo scenario results. These
comparisons involved developing a series of three-dimensional scattering cases,
which in one limit matched existing literature results for uniform density cubical
volumes.

Following development of the RT technique, we consider the usages of these
results in LOS e�ects computations, visualization codes, and compact formats
useful for network distribution of data. In the appendix we show the means
of representing aerosol scattering properties within the Legendre expansion
framework applicable to the DOM.

Conclusions

Methods used in developing radiance mappings and visualization techniques for
the near-surface atmosphere for the visible band are described. The RT model
developed is shown to predict model uxes with 0.999 correlation to the Monte
Carlo cases run. The visualization code developed is shown to produce realistic
images that are also quantitatively correct. We believe these models represent
the state of the art in physics-based radiance modeling of the boundary layer
atmosphere.
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1. Introduction

The performance of any electro-optical imaging system depends on the medium
through which signals are received. As optical systems are continually being
upgraded for special purposes, it is reasonable to augment system design by
studying the impact of environment on system performance. One means of
studying this problem is to simulate the system along with its environment
in such a way that system-controlling parameters can be modi�ed and tested
against a variety of adverse situations. The optimal performance can then be
determined as that combination of parameters providing the best functionality
under the conditions tested.

1.1 Target Acquisition Considerations

From a systems viewpoint, the primary e�ect of the atmosphere is the loss of
contrast between a target and its background. An Army adage says, \if it can
be seen it can be killed." But what does it mean for something to be seen using
a visible waveband system?

Middleton (1952) presented the classic study indicating the human vision system
has a limiting contrast threshold of approximately 2 percent under daylight
conditions. Contrast is usually de�ned as

C(R) =
LT (R) � LB(R)

LB(R)
; (2)

where C is the contrast and LT and LB are the propagated brightnesses
(radiances) of the target (object) and its background, all at range R. When
C(R) falls below 0.02, the object becomes indistinguishable from its background
to a human observer.

Standard analysis of Eq. (2) involves de�ning C0 as the contrast at zero range
and � as the wavelength-dependent extinction coe�cient (assumed constant over
the optical path to the observer). The initial radiance of the target is reduced by
scattering and absorption along the optical path by a factor T (R) = exp(��R)
called the transmittance. In addition, a quantity (LP (R)) known as the path
radiance (scattering and emission of energy into the LOS) is added to both the
attenuated target and background radiances:

LT (R) = T (R)LT (0) + LP (R); LB(R) = T (R)LB(0) + LP (R): (3)
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In the traditional analysis, the path radiance is related to the quantity called
the limiting path radiance or sky radiance (LL), which is the radiance produced
if one could look through an in�nitely long atmosphere in a given direction. The
relationship between the path radiance and the limiting path radiance is:

LP (R) = LL [1� T (R)]: (4)

Introducing Eqs. (2) and (3) into (1), we obtain the form,

C(R) =
T (R)[LT (0) �LB(0)]

T (R)LB(0) +LL [1� T (R)]
: (5)

Dividing numerator and denominator by T (R)LB (0), and using the terms sky-
to-ground ratio (Sg = LL=LB(0)) and inherent contrast (C0 = [LT (0) �
LB(0)]=LB(0)), one obtains,

C(R) =
C0

1 + Sg(T (R)�1 � 1)
; (6)

which is the contrast transmission equation. This equation has important
consequences in assessing atmospheric e�ects on target acquisition and thus
has been incorporated into numerous combat simulations. The inuence of
transmittance is obvious. The inuence of sky-to-ground ratio is less direct,
but not negligible. Lee and LaMotte (1991) have shown how variations in Sg
inuence the loss exchange ratios in combat simulations.

But there are several di�culties in the use of this simple expression in describing
the e�ects of the atmosphere. First, C0 is by no means `inherent' in the sense
that it is an invariant property of a given target against a given background.
The appearance of an object against its background will depend on the available
direct (solar/lunar) and di�use illumination's interactions with an object or
background's bi-directional reectance distribution function (BRDF) (Davis
(1987); Weiss and Scoggins (1987)), or even its facetized representation in more
complex modeling schemes. These characteristics may also be spectrally (color)
dependent (e. g., Gerhart et al. (1995)).

Second, transmittance is not a simple function of range. Slant path geometries
through the atmosphere can involve vertically variable extinction coe�cients
through haze (Fiegel 1994) or fully three-dimensional (3D) variability when
considering clouds.

Third, the sky brightness or limiting path radiance is a function of not only
position and wavelength but also of look direction (Davis 1986) due to non-
isotropic scattering. Further, dense volume segments will create dark and bright
shadow regions in the volume, invalidating the simple form for the path radiance
calculation. To properly evaluate a radiative environment, then, one needs a
fully 3D spectral/directional model.
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1.2 The Modeling Environment

These same observations are made in various studies (Welch and Wielicki (1984);
Kobayashi (1991); Haferman et al. (1993); Li et al. (1994); Byrne et al.
(1996)) which consider the ambient radiances present within the tropospheric
atmosphere and atmospheric layer reectivities of partly cloudy atmospheres.
These studies concluded that one cannot adequately model partly cloudy skies
using plane-parallel atmospheric models, where typically partly cloudy results
are interpolated from results of overcast and clear-sky cases. These studies
thus infer the implicit weaknesses of plane-parallel models to determine target
acquisition capabilities within the Earth's cloud-�lled atmosphere. Yet plane-
parallel models still have numerous applications. For example, plane-parallel
radiative transfer treatments heavily inuence considerations of vertical remote
sensing through cloud free atmospheres (Nakajima and Tanaka 1988) and high
accuracy one-dimensional (1D) radiative transfer (RT) codes (Stamnes and
Swanson (1981); Stamnes et al. (1988)) have been developed expressly for
analysis of these problems.

While 1D-RT codes are clearly valuable for certain applications, robust analysis
of systems performance within a realistic earth atmosphere requires a 3D-RT
code. Of the numerous 3D-RT techniques described in the literature, several are
generally recognized, including Fourier methods, analytical models, di�usion
approximation models, Monte Carlo models, and Discrete Ordinates Methods
(DOM) models. Fourier method studies are typi�ed by Priesendorfer and
Stephens (1984), Stephens (1986, 1988), Kobayashi (1991), and Li et al. (1994b).
Analytical methods have been developed by Davies (1978), used by van de
Hulst (1980a, 1980b), and developed for special cases more recently by Li et al.
(1994a). Di�usion methods were pursued by Gube et al. (1980) and Zardecki
et al. (1986). Monte Carlo methods were used by McKee and Cox (1974)
and Welch and Wielicki (1984). Yet another approach involves the small-angle-
approximation (SAA). This method is often used to study systems e�ects due to
forward scattering of aerosols. But, we are considering only general illumination
and visualization of scenes and the resulting dynamic range e�ects. In e�ect,
we are ignoring the forward scatter problem, which is a separate topic, and thus
will ignore the SAA approach here.

For this work we have selected the discrete-ordinates technique as the most
appropriate vehicle. This focus is prompted by several factors. First, di�usion
methods are inherently limited to relatively isotropically scattering media.
Moreover, this media must be optically thick and have extinction e�ects that
are dominated by scattering. The atmosphere viewed by sensors does not �t
this description in general; while di�usion processes may dominate in extremely
thick regions (clouds) of the atmosphere, they have no applicability to non-
cloud regions. But, any general model must be able to treat both thin and thick
regions.
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Monte Carlo techniques are currently impractical, or at best unwieldy, given
current limited computer resources. In order to characterize paths through
the volume, one must produce a radiance picture of the whole volume, and
Monte Carlo methods do not work well at characterizing all locations in all
directions. Similar considerations restrict the usage of Fourier methods, where
large matrices must be inverted to produce a solution. Typical studies such
as those by Kobayashi (1991) and Li et al. (1994b) restrict the positional
or angular variation of the analysis space in order to limit the size of the
matrix to be inverted. For the size of our sample volume, at a resolution
that characterizes typical natural cloud dimensions, the size of matrix necessary
becomes impossibly large. For example, Fiveland (1987) indicates at least a
24-stream solution is required to provide reasonable directional information on
radiant intensity for visualization purposes. To achieve this resolution for our
typical 323-cell spatial model using a Fourier method, one would need to invert
a matrix of (323 � 24)2 = 786; 4322 = 6:2 � 1011 elements. This approach
appears highly impractical. Other analytical methods appear to be as restricted
in application as the Fourier methods. These considerations led to the selection
of the DOM in 3D using a �nite-element approach.

DOM was originally developed by Chandrasekhar (1960), from which two
parallel courses were pursued. The �rst, primarily useful in astronomical
and satellite applications, focused on 1D modeling (Liou (1973), Stamnes and
Swanson (1981), Stamnes et al. (1988)), culminating in the development
of the DISORT (DIScrete Ordinates Radiative Transfer) routine, a standard
in the �eld. The second e�ort focused on 3D modeling, with applications
primarily in furnace technology and nuclear scattering. The basic theory for this
application was the so-called Finite Element (FE) DOM (Carlson and Lathrop
1968). Improvements to this theory included better simulation of scattering
via the scaling group transformation (McKellar and Box 1981), as commonly
implemented through Wiscombe's (1977) �-M method. Numerous applications
of the DOM include study of radiative interaction with the Earth's surface
(Zardecki et al. (1983), Gerstl and Zardecki (1985a, 1985b)), furnace technology
(Fiveland (1985, 1987)), and foliated canopies (Myneni et al. (1990, 1991)). But,
problems still remain with handling dense media under DOM. Some attempts
have been made to correct these problems (Wakil and Sakadura (1992), Chai et
al. (1994)), but these have mainly been patches to the basic theory.

The development described here has its roots in neutron scattering work of the
70's. We use a level symmetric even quadrature set (Lathrop and Carlson (1965);
Fiveland (1991)) proposed by Lewis and Miller (1984). More recently, Zardecki
and Davis (1991) and Wetmore and Zardecki (1993) developed the immediate
predecessor of the model described herein: the Boundary Layer Illumination and
Radiative Balance model (BLIRB).

Unfortunately BLIRB attempted to model 3D e�ects using traditional FE DOM,
leading to the use of the so-called negative ux �xup patch. The problem
of negative uxes (Fiveland (1985); Gerstl and Zardecki (1985a); Wakil and
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Sakadura (1992)), occurs when the optical thickness across model cells exceeds a

threshold value. Then, the computational method for evaluating stream radiance

exiting the cell can result in negative values. Under the traditional approach,

the only means of avoiding this problem is to limit the maximum optical depth

of a cell by limiting the cell dimensions or through use of an auxiliary method

of compensation known as the negative ux �xup. This coding patch arti�cially

allows denser media within a simulation, but it does not alleviate the consequent

lack of accuracy of the model results. That is, how do you establish what the

right value should be if your estimate is a negative number?

Although alternative corrections have been suggested (Wakil and Sacadura

1992), a general FE DOM for arbitrary media density has heretofore been

lacking. Moreover, DOM techniques have often employed ux renormalizations

to conserve energy (Myneni et al. 1990). But since the negative ux �xup

produces cloud regions that are arti�cially darkened, renormalization attempts

then merely tend to overbrighten regions between clouds without properly

restoring cloud brightness.

In section 2, a methodology for alleviating this modeling de�ciency is presented

where a surface-based DOM computation technique is proposed. In section 3, a

Monte Carlo model is described and compared with standard literature results

(McKee and Cox 1974). In section 4, this Monte Carlo model is used to evaluate

the results of the proposed method, using the McKee and Cox scenarios and 3D

extensions to these scenarios. In section 5, the results of the radiative transfer

code are utilized in a cloud rendering technique, and the formats of standard

outputs are described for use in other applications.

1.3 Support

This software was developed as a consequence of funding under several joint

programs mentioned in the acknowledgements section. Currently, products from

this software are provided through the Master Environmental Library project,

a joint DoD program sponsored by the Defense Modeling and Simulation O�ce.

Support for this software can be obtained by contacting:

1.3.1 Mailing Address

U.S. Army Research Laboratory

ATTN: AMSRL-IS-EW (D. Tofsted)

White Sands Missile Range, NM 88002-5501
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1.3.2 Phone Numbers and E-Mail Addresses

Radiative transfer models and derived output products:
COM:(505) 678-3039
FAX:(505) 678-3385
DSN: 258-3039
email:dtofsted@arl.mil

Visualization products and LOS integrations using RT code outputs:
COM:(505) 678-1570
FAX:(505) 678-3385
DSN: 258-1570
email:sobrien@psl.nmsu.edu
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2. DOMRT

2.1 The Radiative Transfer Equation

The Discrete-Ordinate Method approach to Radiative Transfer (DOMRT) is a
standard technique used in numerically solving the equation of radiative transfer.
We begin by describing the traditional approach.

In the initial step, the scattering volume is divided into a collection of gridded
cells. Each cell is assumed to exhibit uniform scattering properties throughout.
The method then determines the radiance properties of di�use radiation owing
within each cell in a series of directions. In deriving the standard equation used,
one begins with the equation of radiative transfer,


̂ � rI(~r; 
̂) + � I(~r; 
̂) = �s

Z
4�

I(~r; 
̂0)P (
̂; 
̂0) d
̂0 + (� � �s)b(T (~r); �); (7)

where, I(~r; 
̂) is the streaming radiance at position ~r and in direction 
̂. 
̂ is
a unit vector composed of direction cosines �, �, and � along the x, y, and z
axes, respectively. P (
̂; 
̂0) is referred to as the phase function, representing the
probability of scattering of a photon between incident and departing directions
(
̂0 and 
̂, respectively), given that a scattering occurs. The normalization

condition for P (
̂; 
̂0) is that integration over all possible scattering directions
equals unity: Z

4�

P (
̂; 
̂0) d
̂0 = 1: (8)

Also, due to the principle of reciprocity (Van de Hulst 1980a), one must have

P (
̂; 
̂0) = P (
̂0; 
̂): (9)

The �rst term on the left in Eq. (7) represents the di�erential change in the

streaming radiance, I, along direction 
̂. The second term on the left represents
combined extinction losses in the stream radiance due to absorption and
scattering. The right-hand side (RHS) consists of contributions to the stream
radiance due to scattering and graybody emissions within the medium (�rst

and second terms, respectively). In the scattering integral, d
̂0 is a di�erential
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solid angle, � is the extinction coe�cient, �s is the scattering coe�cient, and
b(T (~r); �) is the blackbody emission function.

Let us now simplify the writing of Eq. (7) through the use of the terms J and
B, where J is the scattering source term,

J(
̂; ~r) = $(~r)

Z
4�

I(~r; 
̂0)P (
̂; 
̂0) d
̂0; (10)

and B is the emissive source term,

B(~r; �) = (1�$(~r)) b(K(~r); �); (11)

where � is the radiation wavelength (expressed here in �m), and K is the
temperature (in Kelvin) of the medium, as a function of position. The coe�cient
$ is the single scattering albedo, representing the probability that a collision
of a photon with a particle will result in a scattering event. The assumption
of local thermodynamic equilibrium dictates that the probability of an emission
event is proportional to (1�$). Hence, ���s = (1�$)� = �a is the absorption
coe�cient. Together, the sum of J and B equals the limiting path radiance, L.

The blackbody emission function may be written as,

b(T (~r); �) =
1:19106� 108 ��5

exp[14; 388=(�T )]� 1
; (12)

producing a result with units of W/m2-sr-�m. (All results of this derivation
represent spectral radiances, but the frequency dependence hereafter will be
suppressed.)

Using these de�nitions, the radiative transfer equation reduces to,


̂ � rI(~r; 
̂) + � I(~r; 
̂) = �
h
J(~r; 
̂) +B(~r)

i
: (13)

If the medium is now discretized such that T , �, $, and the scattering source
integral are assumed constant over the span of a cell, then the RHS of Eq. (13)
is constant, and one can introduce the variable �, de�ned as,

�(
̂; ~r) = I(
̂; ~r)� L(
̂; ~r) = I(
̂; ~r)� J(
̂; ~r)�B(~r; �): (14)

Introducing this variable in Eq. (13) we �nd,


̂ � r�(~r; 
̂) + ��(~r; 
̂) = 0: (15)

This equation can be solved if we make two more assumptions. First, we assume
that the input stream values to a cell are constant over each input face. Second,
we evaluate the scattering source term J by taking an average of the unscattered
stream energy over the volume of each cell. We then evaluate the average
radiance of a given stream exiting a given cell face by averaging the output
results over that face. This average then forms the basis for use as an incident
value in the next adjacent cell.
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2.2 Level Symmetry Quadrature Sets
Before continuing with this train of thought, though, we must consider the
heart of the discrete ordinates approach. Under this approach, all integrations
over solid angle are approximated by summations over a specially selected set
of sample directions, 
̂m. (Sets of sample directions are available at increasing
numbers of sample stream points.) As higher order ordinate expansions are used,
the method becomes progressively better. In our study, level symmetric sets of
ordinates using Gaussian quadrature have been chosen (Lewis and Miller 1984).
While these sets have certain limitations regarding ux integration (Fiveland
1991), we minimize the error associated with these integrations in the approach
developed.

A level symmetry set means that the di�use stream directions 
̂m are
characterized by combinations of a single set of component values �i which
are symmetric about the zero planes in x, y, and z.

Each order of approximation is denoted by the symbol SN , where S indicates a
level symmetry and N represents the order of approximation. The values for N
are even integers ranging upward from 2. For a given order of approximation N ,
there will be N � (N +2) =M streams. Thus S2 is an 8-stream approximation,
S4 is a 24-stream model, and S6 is a 48-stream model. For the time being we
will focus on the S2 and S4 cases, though extensions to higher orders are readily
available.

To understand how the number of streams are related to the order of
approximation, consider that each streaming direction 
̂m can be described
by a set of three integers i, j, k, where � = �i, � = �j , � = �k, such that

�2i + �2j + �2k = 1: (16)

There are N=2 � 1 unique triplets for level symmetric set SN . Lathrop and
Carlson (1965) have shown that only one degree of freedom remains in choosing
the direction cosines, using the relation:

�2j = �21 + 2
j � 1

N � 2
(1 � 3�21): (17)

Of course, when N = 2 there are no degrees of freedom, since, necessarily,
�1 =

p
1=3; �2 = ��1. In the derivation of Eq. (17) the last term is assumed

positive, which requires 0 � �21 � 1=3 (Fiveland 1991).

For the S2 and S4 approximations considered in this paper, the �i's are �
p
1=3

and
p
1=3 in the 8-stream approximation, and equal to -0.8688903, -0.3500212,

0.3500212, and 0.8688903 in the 24-stream model. Thus, for S2, there is only
one combination of � values possible for an 
̂ vector in the �rst octant, or
eight possible directions when all octants are considered. For S4, there are
three possibilities for vectors in the �rst octant: let �1 = 0:3500212 and �2 =
0:8688903. Then, 
̂1 = (�2; �1; �1); 
̂2 = (�1; �2; �1); 
̂3 = (�1; �1; �2).
Similar permutations occur in each of the other seven octants, resulting in 24
streams total.
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2.3 Angular Integration

The value of the discrete ordinates approach is that scattered energy at any
angle can be interpolated to the degree of resolution of the approximation used.
Thus, there is always a means of expressing radiance in all directions, as opposed
to methods such as Monte Carlo, where the means of interpolating intermediate
directions can be ambiguous.

The general equation for performing angular integrations under the discrete
ordinates approach is via the approximation:

1

4�

Z
4�

f(
̂) d
̂ � 1

8

MX
m=1

wm f(
̂m): (18)

where 
̂m are the discrete ordinate directions, which depend on the particular
order of approximation and ordinate direction selection scheme chosen, and the
wm are weighting coe�cients. In essence, the wm measure the fraction of an
octant of solid angle that is being occupied (inuenced) by that ordinate; in
particular, wm = 1 in the 8-stream model and wm = 1=3 in the 24-stream
model.

The DOM using Gaussian quadrature is useful when dealing with RT problems
in that the choice of directions can be closely matched to the means of expressing
the scattering phase function as a low order Legendre expansion. In general, the
level of detail in a discrete ordinate method is directly related to the level of
detail desired in the Legendre expansion of the phase function. That is, using
the discrete ordinates technique, one approximates the phase function (P (�))
by a �nite sum of a series of weighted Legendre polynomials as

P (�) � ~P (�) =
NX
`=0

�`X` P`(�); X` = 2�

Z 1

�1

P (�0)P`(�
0) d�0; �` =

2`+ 1

4�
:

(19)
where P`(�) is `th Legendre polynomial,

P`(�) =
1

2``!

d`

d�`
(�2 � 1)`; (20)

and � is the cosine of the angle between incident and scattered directions.

For a given discrete ordinates model (SN), the limit (N) of the summation ~P (�)
is the same as the limit of the stream model N value used. This ensures the
adequate precision of angular integrals. However, the summation ~P (�) is seldom
used in the raw form seen above. Instead, the scaling transformation is used to
modify the Legendre polynomial weighting constants X` to remove the forward
peak of the phase function. The appendix describes a modi�ed version of the
scaling transformation approach that optimizes the choice of Legendre weighting
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coe�cients. This approach also results in changes to the coe�cients � and $
used in the scattering computations on a cell-by-cell basis. In the development
that follows, this step has been assumed completed such that the resulting phase
function has no forward peak.

From our discrete ordinates approach, then, the scattering source function Jm
for propagation direction 
̂m is

Jm(~r) = $(~r)
4�w

8

MX
m0=1

P (
̂m; 
̂m0) Im0 (~r): (21)

2.4 Low-Density DOMRT

Armed with this understanding of the discrete ordinates approach to angular
integration, from �rst principles we proceed to generate a set of equations for
all di�use streams and to determine the net radiation owing in any direction
at any position within the scattering volume.

Let s be a distance variable in the direction of propagation 
̂m. Then Eq. (15)
can be written as a function of distance s across the cell,

d�
̂m
(s)

ds
+ ��
̂m

(s) = 0; (22)

which has the explicit solution,

�
̂m
(s) = �
̂m

(0) exp(�� s); (23)

where �s is an optical depth measure, and exp(��s) is a transmittance.

Converting back to the original variables, we �nd a solution for the streaming
radiance over a single cell,

I
̂m(s) = I
̂m(0) exp(�� s) + L
̂m
[1� exp(�� s)]; (24)

where L
̂m
= L
̂m

(0) = L
̂m
(s) is the sum of the source contributions to

radiance, assumed constant within the cell (c.f., Lewis and Miller 1984).

2.4.1 Propagation Equation Terms

Under traditional DOM, the transmission factor is linearized, whereby

exp(�� s) � [s�1=(s�1 + � )]: (25)

Figure 1 compares this approximation with the actual negative exponential
function via a plot of exp(�� s)=[s�1=(s�1 + � )]. As the �gure illustrates,
this approximate function is only valid for very small optical depths. For
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Figure 1. Ratio of the negative exponential function exp(��s) to the
approximation curve [s�1=(s�1+� )]. The two functions are only roughly equal
around an optical depth of zero. (Optical depth is � = �s.)

larger optical depths the approximate transmittance far exceeds the actual
transmittance function.

Introducing Eq. (25) into Eq. (24) produces the result,

I
̂m(s) =
s�1I
̂m(0) + � L
̂m

s�1 + �
; (26)

where s is usually replaced by the distance to the center of the cell.

In standard texts describing this approach, the streaming energy is discretized
such that a stream directed in the 
̂m direction at position (xi; yj ; zk) is assigned
a value I(m;i;j;k). Stream radiances at walls are identi�ed by the use of half
indices. For example, for a stream owing into the �rst octant, there would
be surface-based stream values at the x (I(m;i�1=2;j;k)), y (I(m;i;j�1=2;k)), and
z (I(m;i;j;k�1=2)) input faces. On each of these input faces, the modeled net
energy crossing the face is proportional to ��y�z on the x input face, ��x�z

on the y input face, and ��x�y on the z input face, where the �'s are the cell
lengths along the respective subscripted axes.

Thus, in each case, the net energy crossing the input face of the cell is
proportional to the cosine of the stream with the input face multiplied by the
surface area of the face itself. The mean source radiance at the cell edge can
therefore be expressed as a surface average over the three input surfaces:

I
̂m(0) �
��y�zI(m;i�1=2;j;k) + ��x�zI(m;i;j�1=2;k) + ��x�yI(m;i;j;k�1=2)

��y�z + ��x�z + ��x�y
:

(27)
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Dividing numerator and denominator by �x�y�z=2 we obtain,

I
̂m(0) �
2�I(m;i�1=2;j;k)=�x + 2�I(m;i;j�1=2;k)=�y + 2�I(m;i;j;k�1=2)=�z

2�=�x + 2�=�y + 2�=�z
:

(28)

I
̂m(0) thus represents a weighted average of the projected intensities on the

three input faces of the volume of interest. This mean initial value for the

stream is the �rst unknown on the RHS of Eq. (26). The second unknown is the

choice of the distance parameter s measuring the distance to the center of the

cell. In the standard approach s is normally determined as,

1

s
=

2�

�x
+

2�

�y
+

2�

�z
; (29)

where �x=2� would be the total distance travelled by a ray crossing a plane-

parallel slab of thickness �x=2 that makes a cosine of � with the slab normal.

The L
̂m
represents the volume centered limiting path radiance based on the

I(m;i;j;k) values obtained from a previous iteration of the model, the direct

illumination for that cell, and the cell centered temperature T(i;j;k).

2.4.2 Low-Density Limitations

Though variations on the above described approach have been investigated, one

essential point remains: the intensity projected for the opposite side of the cell is

typically derived via extrapolation of its value at the cell center. One particular

choice for this extrapolation is known as the diamond di�erence technique. To

illustrate this technique, let I� be the initial value of the stream at the near edge

of the cell (previously I
̂m(0)), let I� be the cell-centered value (I
̂m(s)), and

let I+ be the estimate for the stream at the far side of the cell (I
̂m(2s)). Under

the diamond di�erence, the central stream value is simply approximated as the

mean of the stream values at the opposite sides of the cell (I� =
1
2 (I� + I+)).

To estimate the stream value at the far side of the cell, this equation is simply

inverted to produce:

I+ = 2I� � I� = 2
s�1I� + � L
̂

s�1 + �
� I� =

s�1I� + � (2L
̂ � I�)

s�1 + �
: (30)

Di�culties arise whenever 2L
̂ < I� because the numerator has the potential

to become negative for large optical depths. For example, what happens when

modeling a cloud covering more than one cell? Normally, models begin by setting

all radiances initially to zero. Hence, on the �rst pass, L
̂ � 0. Figure 2 shows
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Figure 2. Negative ux consequences of the diamond di�erence equation.

the behavior of I+ in this case as � increases. This indicates that for cell optical

depths greater than 2, the ux will be estimated as negative.

This problem must be patched in order to hope for a reasonable solution. One

patch, the so-called negative ux �xup, yields a numerically stable algorithm

whereby all negative uxes are simply reset to zero. However, the result of

using this �x produces di�culties in interpreting the appropriate brightness of

regions where these negative values persist throughout successive iterations of

the modeled volume. In the case mentioned above, where a cloud spans more

than one model cell, the zero values produced on outer cells may never allow

energy to propagate into the volume to reach an inner cell. The algorithm then

predicts black regions that are physically unreasonable in terms of typical cloud

scattering properties. Some better means of treating optically dense clouds is

thus sought here.

Other authors have proposed modi�cations of the standard discrete ordinate

method (c.f. Wakil and Sacadura (1992) and Chai et al. (1994)). However, these

modi�cations retain the usage of a cell-centered computation of the limiting path

radiance and still require renormalization to produce energy balance. In the next

section, a theoretical discussion of a discrete ordinates radiative transfer solution

is presented which extends the traditional volume-based concepts to a surface-

based method. It is shown that this reworking of the discrete ordinates approach

improves the performance of the discrete ordinates results for dense media and

can support a system which automatically conserves energy.
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2.5 Surface-Based DOM

In this section, an approach is developed to track available di�use energy
sources using surface-based input and output stream radiances over an individual
scattering cell. We �rst discuss transmission across the cell between input and
output faces. We then focus on evaluating the volume averaged unscattered
radiation due to energy entering the cell through a single cell wall along a
single streaming direction. Using this result, and assuming the di�use energy
available in a given streaming direction is constant across a given input surface,
one can determine the inuence of that stream on the path radiance of any
stream as it exits the volume through a given surface element. Also, from the
standpoint of an output face, the average transmission through the volume for
a given stream exiting a given face can be determined. From this information,
one can compute the average contribution of volume-based path radiance to an
output stream from all input streams. This information can then be combined
to determine the net fractional energy accounted for due to volume-based
transmission, absorption, and di�use scattering processes for energy entering
a given face via a given stream. It is argued that the remaining energy can be
accounted for by a surface scattering/absorption procedure.

Since all results must be expressed in terms of output surface radiances, this is
best accomplished by averaging Eq. (24) over an output face,

hI
̂m(s)i =
D
I
̂m(0) exp(�� s)

E
+
D
L
̂m

[1� exp(�� s)]
E
: (31)

Note that L
̂m
already represents a volume average; what remains are

evaluations of the output face averaged transmission factor and the expectation
value of the product factor, which is the �rst term on the RHS of Eq. (31). In
this calculation, we are aided by the assumption that all input radiances are
constant over each input face. This �rst term thus is re�expressed as a weighted
sum of terms as explained in the following sections.

2.5.1 Cell Geometry

In describing these expectation values, we begin by representing the directional
vector 
̂ by its three directional cosines (�; �; �) in x, y, and z directions,
respectively. Because the cells have a cubical geometry, we can assign a
`standard' stream chosen to ow into the �rst octant, principally in the �
direction. Hence, � � � > 0; � � � > 0. The appearance of the cell with respect
to the incident stream is illustrated in �gure 3 as it appears to an incident
stream. In the �gure, the z axis extends into the page, and the origin is labeled
O, near the lower left corner.

For any stream, there will always be three input faces and three output faces.
We identify the various faces of the volume using a sign (+/-) and letter (X, Y,
Z) convention. In the standard scenario, because �, �, and � are all greater than
zero, the input faces will be identi�ed as the -X, -Y, and -Z faces; the output
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Figure 3. Division of a cell for transmission purposes. Face-on view as seen by
energy in the incident stream.

faces will be the +X, +Y, and +Z faces. We subdivide each of the 3 input faces
into a set of rectangular and triangular faceted subareas as shown in �gure 3.
There are four types of such subareas, labeled with letters A, B, C, and D.

To better understand the subdivision of the cell input faces into these di�erent
facets, we provide two additional �gures. Figure 4 shows the cell segmenting
system as the stream enters and exits the cell from a rotated viewing position.
Figure 5 shows the same stream and segmenting system; dashed lines have
been added to show the hidden boundaries of the segmented portions within
the volume. In addition, letters in �gure 5 denote the corners of the volume
segments.

In table 1, the descriptions of the input and output faces of each volume segment
are given to clarify the connection between �gure 3 and �gures 4 and 5. The
designation of the appropriate input and output faces with which each segment
is associated, along with the appropriate corner point labels, are given to help
understand the 3D nature of the volume and its segments.

In the type A area, the optical depth is constant at each point over the
rectangular input face. In �gure 5, this corresponds to an optical depth
experienced over the path from input point a to output point n. Geometrically,
this volume is a parallelepiped. For type B and C input regions, the geometry
is that of a wedge: the optical depth is constant along one axis and linearly
increasing along the second. Type D areas represent the bases of trigonal
pyramids, with a maximum optical depth along the edge bordering the A region,
and have optical depth decreasing linearly down to zero on the opposite side.
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Figure 4. Subdivided cell revealing input and output surfaces in a rotated view
for the same stream used in �gure 3.

Figure 5. Subdivided cell showing hidden edges bordering di�erent volume
segments in a rotated view.
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Table 1. Input and output face designations for surface facets

Region Input Face Input Surface Output Face Output Surface

Corners Corners

A -Z a,b,d,e +Z n,o,q,r

B1 -X a,b,k,l +Z k,l,n,o

B2 -Z d,e,g,h +X g,h,q,r

C1 -Y a,d,m,q +Z m,n,p,q

C2 -Z b,c,e,f +Y c,f,o,r

D1 -Y a,j,m +Z j,m,n

D2 -X a,j,k +Z j,k,n

D3 -Z e,h,i +X h,i,r

D4 -Z e,f,i +Y f,i,r

D5 -Y d,g,p +X g,p,q

D6 -X b,c,l +Y c,l,o

2.5.2 Facet Transmittances

From the standpoint of the discrete ordinates method, all the energy in a given
stream is considered to be traveling in the same direction (
̂m), even though it is
applied over a speci�c solid angle during integration. Second, the geometry of all
cells is assumed cubic. Thus, every cell in the scattering volume is characterized
by a single cell-width parameter �. Energy entering a cube through the area
labeled A experiences a total optical depth, � , equal to ��=�, as it crosses the
volume. So the area-averaged mean transmittance for ux entering the volume
through area A is

�TA = exp(�� ): (32)

Area types B, C, and D have more complicated forms for the transmittance
equations due to their modi�ed geometries.

For type B and C areas, the mean transmittance can be computed by taking
the integral of the point-to-point transmittance at each point on the surface and
dividing by the total surface area to produce:

�TB = �TC =

1Z
0

exp(��u) du = e�� � 1

�� : (33)

Notice that this result depends on � = ��=�, but not on the exact length and
width of the region, since it is surface averaged.
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For type D areas, the mean transmittance is again determined by integration:

�TD = 2

1Z
0

du

uZ
0

dv exp(��v) = e�� � (1 � � )

�2=2
: (34)

Here, division by the area normalization factor (1/2) results in the factor 2
appearing in front of the integral.

For the sake of brevity, these results can be described using an apparently new
class of related functions:

Gi(� ) =

h
e�� �Pi�1

j=0

�
(�� )j=j!�i

(�� )i=i! =
1X
j=0

i!

(i+ j)!
(�� )j: (35)

Thus, we can represent the average transmittances for cell wall regions A, B, C,
and D as �TA = G0(� ), �TB = �TC = G1(� ), and �TD = G2(� ). Comparisons of
the G functions are given in �gures 6 and 7. The �rst of these illustrates the
basic behaviors of these functions. (We extend these results up to G3(� ) because
this functional form is relevant in further calculations.) Figure 7 illustrates the
normalized behaviors of this class of functions. Note that successive functions
have limiting behaviors Gi(� ) � 1 � �=(i + 1) for small � . But, even after
normalizing these functions according to their limiting behavior around zero,
higher order G functions are always greater than lower order functions. This
illustrates the fact that energy passing through a cell between adjacent walls
experiences far less attenuation than is predicted by the negative exponential
function, and partially explains why the classical FE DOMRT methods fail.

Figure 6. Comparison of transmittance functions Gi(� ) for i values ranging from

0 to 3.
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Figure 7. Comparison of transmittance functions Gi(� ) normalized according

to their limiting behavior around � = 0.

2.5.3 Face-to-Face Transmittances

Using these results, one may describe the mean transmittance of energy owing
from one input face to a given output face through weighted averages of the
transmittances of its di�erent facets.

To produce these transmission functions, the parameters � = j�=�j � 1, and
� = j�=�j � 1, are introduced. We also introduce area measurements that are
determined via projections onto a plane containing the -Z face (�gure 3). The
projected areas subtended by the various surface portions with respect to this
plane are given in table 2.

Table 2. Region area values for subcomponents of input surfaces

Region Type Region Area

A (1� �)(1 � �)�2

B �(1� �)�2

C (1� �)��2

D ���2=2

One can then determine the average transmittance from a given input wall to
a given output wall by forming a weighted average of the transmittances of
the various facets of each input wall connecting to each output wall. These
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calculations form a matrix with components detailed as follows: The -Z and +Z
walls only connect through the type A area. Hence,

T�Z;+Z = G0(� ): (36)

The X and Z walls connect via a D-type and a B-type volume segment. Let AB

and AD be the projected areas of these walls respectively. Thus,

T�Z;+X = T�X;+Z =
AB

�TB +AD
�TD

AB +AD
; (37)

which results in,

T�Z;+X = T�X;+Z =
2G1(� )� �[2G1(� )�G2(� )]

2� �
; (38)

where the � factor cancels out of the numerator and denominator. A similar
development can be performed for the connectivity between Z and Y-type
surfaces,

T�Z;+Y = T�Y;+Z =
2G1(� )� �[2G1(� )�G2(� )]

2� �
: (39)

The X and Y faces only connect through single facets (D5 and D6) and thus are
characterized by,

T�X;+Y = T�Y;+X = G2(� ): (40)

Lastly, neither the X nor Y faces connect directly between their input and output
faces:

T�Y;+Y = T�X;+X = 0: (41)

Subscripts in these equations indicate the face connections. The resulting matrix
is diagonally symmetric.

In addition to the foregoing transmittance factors connecting input and
output surfaces for the standard scenario, we may also determine the mean
transmittance factors to each output face (+X, +Y, and +Z) to all connected
input faces. These calculations are accomplished by constructing a weighted
sum of the previous transmittance factors, where the weights are determined
according to the fraction of the output face connecting to each input face. For
an X-type output face, the energy is passing through 2 D-type facets and 1
B-type facet. Thus,

�TX =
AB

�TB + 2AD
�TD

AB + 2AD
; (42)

which results in,
�TX = G1(� )� �[G1(� ) �G2(� )]: (43)

A similar result is obtained for Y-type faces,

�TY = G1(� )� �[G1(� ) �G2(� )]: (44)
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For Z-type faces, the summation averages the results over an A-, a B-, a C-, and
two D-type facets, leading to the result,

�TZ = �G0(� ) + (�� + �)G1(� ) + ��G2(� ); (45)

where  = 1� � and � = 1� �.

Due to the symmetries of the problem, Eqs. (43) through (45) also represent the
average transmittance through the volume from a given input face of the same
type. That is, �TZ is both the mean transmittance of energy entering the volume
through a Z-type input face and the average transmittance of energy exiting the
volume through a Z-type output face.

These computations allow us to determine both the total amount of ux lost due
to scattering and absorption from the stream as it enters a given face, and also
allow for an emission term to be evaluated on a similarly labeled output face.
For example, if the average transmission through the volume to a given output
face is labeled TQ, then (1 � TQ) represents a source factor in the emittance
portion of the radiative transfer solution for that output face.

Therefore, let us return to Eq. (31), where as we already noted, the factor L
̂m
already represents a volume average result. Thus, this factor may be removed
from the expectation operator, resulting in,

hI
̂m(s)i =
D
I
̂m(0) exp(�� s)

E
+ L
̂m

[1� hexp(�� s)i]: (46)

The quantity within expectation operator in the second term on the RHS of the
equation is just the TQ terms we have just derived.

Further, with our current understanding of the transmission factors between
di�erent cell faces, we can evaluate the �rst term on the RHS directly. Recall
that one of our assumptions was that the input radiances were assumed constant
over each input face. We therefore introduce the terms IX , IY , and IZ for our
standard scenario X, Y, and Z input face radiances, respectively. The �rst term
on the right, under our constant input assumption, becomes a weighted sum
of the area of a given facet times the input radiance applicable for that facet
times the average transmission factor for that facet. For example, for an X-type
output face we have,D

I
̂m(0) exp(�� s)
E
X
=
AD

�TD IY + (AB
�TB +AD

�TD) IZ
AD +AB +AD

=
�

2
T�Y;+X IY +

�
1� �

2

�
T�Z;+X IZ ;

(47)

where the quantities �=2 and (1��=2) are fractional area weighting factors that
sum to unity and represent the contributions of the input faces to the output
from a given output face. The weights for each output face are given as a
function of the appropriate standard scenario input faces in table 3. Of course,
transformations must be made to translate these results into terms useable for
non-standard scenarios.
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Table 3. Input face weight values for the standard scenario

Output X Input Y Input Z Input

Face Type Weight Weight Weight

X 0 �=2 (1� �=2)

Y �=2 0 (1� �=2)

Z �(1 � �=2) �(1� �=2) (1 � �)(1 � �)

2.5.4 Mean Illumination Factors

We have thus far developed a mechanism for evaluating all the terms in the

average equation of transfer between input and output faces except for the

volume-averaged limiting path radiance, L
̂m
. The limiting path radiance (L)

is the sum of blackbody (B), scattering source (J), and direct contributions. In

considering the computations needed to evaluate the radiative transfer equation,

we �rst acknowledge that J , as given in Eq. (10), is a positionally varying

quantity. But, I is not known except as wall-average values. We are thus

limited according to the granularity of the volume resolution used. Further,

since the phase function reects the results of single scattering, rather than

posit a complicated model for I's behavior within the volume, to �rst order

it is postulated that the scattering due to a given input stream is dependent

on only the mean unscattered illumination provided by that stream and the

medium within a given cell. The determination of this mean value requires a

set of integrals similar to those used to determine the mean transmittances.

These quantities are produced by integrating over the scattering volume swept

by energy passing through geometries identical to those considered during the

transmittance discussion.

For each type region, the unscattered illumination present at a certain depth

within the material is equal to exp(��w), where � is the maximum optical

depth across the cell for that material and for that stream, and where w is the

fractional distance of that point into the material compared with the maximum

optical depth presented by that material for that stream.

For region A, the mean illumination can be related to an integral over a cubic

region where the optical depth is measured into the material along a single

axis. A unit volume is used because the optical depth along the w axis is

measured such that at distance 1 the maximum optical depth is reached. Along

the other axes, the averaging process eliminates any dependence on actual region

size. Additionally, this geometric integral is possible due to the assumption of

uniform initial radiance of the incident stream across the input face. These
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considerations lead to the formula,

�A =

1R
0

du
1R
0

dv
1R
0

exp(��w) dw
1R
0

du
1R
0

dv
1R
0

dw

=
e�� � 1

�� = G1(� ): (48)

For B and C type areas, the following integral can be used. In this integration,
the u axis denotes the direction of decreasing wedge thickness.

�B = �C =

1R
0

du
1R
0

dv
1�uR
0

exp(��w) dw
1R
0

du
1R
0

dv
1�uR
0

dw

=
e�� � (1� � )

�2=2
= G2(� ); (49)

For type D areas, the integral is performed over a pyramidal shaped volume.
The thickest portion of this region is at u = 0, v = 0 in the following integral.

�D =

1R
0

du
uR
0

dv
1�uR
0

exp(��w) dw
1R
0

du
uR
0

dv
1�uR
0

dw

=
e�� � (1� � + �2=2)

��3=6 = G3(� ); (50)

These � functions are unitless and relate to the relative mean illumination
(radiance) provided by ux entering the volume segment of interest. To produce
overall average illumination in the cell due to ux owing across a given input
face, the `standard' model is again referred to. We denote the relevant volumetric
mean illuminations due to incident radiances IX , IY , and IZ (passing through
the standard input faces X, Y, and Z of the volume, respectively) by the
quantities IX , IY , and IZ . These means are computed based on weighted
averages of the mean illumination of the volume type illuminated [Eqs. (48)
through (50)], multiplied by the fraction of the total volume contained within
each volume segment. The segment volumes associated with each of the region
types are given in table 4.

Table 4. Segment volumes for subcomponents of input region types

Region Type Region Volume

A (1� �)(1 � �)�3

B �(1� �)�3=2

C (1� �)��3=2

D ���3=3
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For the resulting mean illuminations, one then obtains (after dividing by the
total volume �3):

IX = �X IX = �

�
�
G2(� )

2
+ �

G3(� )

3

�
IX; (51)

IY = �Y IY = �

�

G2(� )

2
+ �

G3(� )

3

�
IY ; (52)

and

IZ = �Z IZ =

�
 � G1(� ) + [�  + ��]

G2(� )

2
+ ��

G3(� )

3

�
IZ : (53)

The total mean illumination within the scattering volume for a given stream is
then just the sum of the mean illuminations over the appropriate three input
faces for that stream. Due to the symmetrical structure of the streams in
di�erent octants, it is possible to generate �X , �Y , and �Z values according to
stream type and make appropriate transformations to convert the input stream
information from the proper input faces into the mean illumination statistics for
the cell.

Based on the mean illumination for a given stream, we may then determine
the amount of ux subsequently scattered into each stream leaving the volume
from each face, and thus assess the total ux leaving the cell due to volumetric
scattering.

2.5.5 8-Stream Example

To illustrate the development to this point, consider an 8-stream DOM model.
In this model, j�j = j�j = j�j = 1=

p
3. Hence, � = � = 1. Because of model

symmetries, all eight streams can be characterized by transformations on the
one unique standard stream direction in the �rst octant.

As each input stream enters through a particular input face, a portion of the
entering ux will transmit directly to two output faces, to each of which half the
streaming ux is directed. The transmittance to each output face isG2(� ), where
� =

p
3��. On each output face, Q, four streams are directed outward through

it. Each of these output streams has a mean emittance factor of (1 � TQ) =
[1�G2(� )]. Thus, the single scattered ux emitted by a particular stream on a
given face is proportional to [1�G2(� )].

For each stream m, the volume averaged radiance is

Im = G3(� )
(IX + IY + IZ)

3
: (54)

Each input stream scatters ux into all eight output streams. Each stream
makes a cosine of 1 with itself, -1 with the stream in the opposite octant, 1/3
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with three streams, and -1/3 with the three remaining streams. Let these cosines
be represented by the variable �ms (cosine of the scattering angle), and represent

the modeled phase function value for this scattering angle by ~P (�ms). For the
moment ignoring emissive e�ects, the inuence of input stream m on a speci�c
outward owing stream s is computed using the volume averaged radiance and
the phase function value. Now, if we designate the scattering source in this
direction as Jms, then from Eq. (21) we have,

Jms = $
4�w

8
~P (�ms) Im: (55)

Here, the angular weight factor w equals 1 for all 8-stream cases. This source
term can then be used to determine input stream m's e�ect on all scattered ux
exiting the three output faces corresponding to stream s. Let Ems be the net
ux exiting the volume due to Jms:

Ems = 3
1p
3

4�w

8
[1�G2(� )]�

2 Jms; (56)

where the 3 represents the contributions on the three output faces, 1=
p
3 is each

output stream's cosine with each output face normal, 4�w=8 appears due to the
integration over solid angle on the output face, and [1�G2(� )] is the emittance
factor. The units of Ems are W/�m. Summing over all exiting streams, the
total ux streaming out of the volume due to scattering source Jms is:

ES =
X
s

Ems =
3p
3

4�

8
[1�G2(� )]�

2$G3(� ) Im
X
s

4�

8
P (�ms): (57)

Due to the discrete ordinates method chosen, the sum over scattering angles
can be divided into individual sums over each Legendre component. These
sums cancel for all but the isotropic term, which sums to unity. Thus through
cancellation we obtain:

ES = $�2 1p
3

4�

8
[1�G2(� )]G3(� ) (IX + IY + IZ): (58)

Similar computations can be made for the total transmitted (ET ) and total
incident uxes (EI) due to this stream (again taking account for the �nite solid
angles associated with the streams as they enter and exit the volume):

ET = �2 1p
3

4�

8
G2(� ) (IX + IY + IZ); (59)

and

EI = �2 1p
3

4�

8
(IX + IY + IZ): (60)
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To evaluate the fractional ux accounted for via transmittance and volumetric
scattering and absorption, ES is divided by the single scattering albedo to
account for absorbed and scattered radiation. This result is added to ET , and
the sum is divided by the incident ux. The result is:

�(� ) =
ES=$ +ET

EI
= G2(� ) +G3(� )�G2(� )G3(� )

= 1� [1�G2(� )] [1�G3(� )] :

(61)

This function is plotted in �gures 8 and 9. These �gures show the behavior of
�(� ) as a function of increasing cube axial optical depth (��). From the plots,
it is clear that the volume based equations are reasonably accurate for � � 1,
since in the limit of � = 0 the curve has slope zero and equals unity, accounting
for all the ux. For large � the approximation is progressively more lossy.

Figure 8. Fractional ux accounted for in 8-stream model using volumetric
e�ects.

The main point to keep in mind, though, is not that these calculations indicate
that there are problems for high optical depth { indeed there are problems { but
these are problems that are common to every strictly volume-based equation
set. The conclusion is that volume-based equations alone cannot account for all
the scattered and transmitted energy.

Cases of higher order quadrature sets exhibit similar behavior to the 8-stream
curve shown here, since the limitation is not in the number of streams but due
to the single scattering approach taken to model the scattering phenomenon.
Nevertheless, these results can be shown to preserve more accuracy than the low-
density approach since the transmittance factors are at least being computed
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Figure 9. Fractional ux accounted for in 8-stream model using volumetric
e�ects. Plot of high optical depths.

exactly, and we are making our single scattering calculation based on a true
volume average of the radiance for each stream. The low-density equations fail
by approximately 1 optical depth. These equations perform well up to and
exceeding 1 optical depth, but they do not fair well beyond about 4 optical
depths.

Hence, the most critical factor limiting the use of the pure volumetric approach
obtained thus far is due to the nature of the atmosphere itself: at visible
wavelengths natural cloud optical depths are often hundreds of optical depths
thick. For a 3D-RT simulation of an atmospheric volume containing even a
simple cumulus cloud, the method described to this point would still require
millions of cells to adequately maintain ux balance via purely volumetric e�ects.

2.5.6 Surfacelike Interactions

To augment the technique developed thus far enabling it to treat large optical
depth conditions, it is postulated that any missing energy can be accounted
for by using surface-like scattering and absorption events. This hypothesis can
be justi�ed based on the following two empirical arguments. First, consider a
stream of energy directed perpendicular to a face of entry into a volume element.
At high optical depths, negligible energy propagates unscattered through the
volume, and the mean unscattered radiance rapidly approaches zero as one
moves further into the volume. Physically, this means that virtually all the
energy is interacting with the media within a short distance of the input face.
This scenario would produce near-zero transmission and illumination factors
(resulting in a near-zero volumetric e�ciency factor �), and virtually all the
energy would be scattered or absorbed at or near the surface. In a second
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thought experiment, consider a stream that enters the volume at an incidence
angle which is nearly tangent to the input face. In this case, we do not care how
thick the media is, but only consider the cell averaged illumination produced.
Because the cosine of the incident stream is so small, the fractional volume
illuminated by the stream is very small, and thus whatever scattering does occur
must occur within a short distance of the entry face. In either case, then, a
volumetric scattering model is inappropriate. Thus, it is argued that any energy
not seen when accounting for transmittance and volumetric di�use scattering
and absorption can be modeled with a surfacelike scattering/absorption process.

To characterize the amount of energy to be recovered due to surface e�ects
in the 8-stream example, we would need to allow fractional energy in the
amount [1�G2(� )] [1�G3(� )] to interact at the surface of the medium for
each incident stream. Let us characterize this fractional surface interaction with
the parameter S(� ) = [1��(� )]. For stream models beyond S2 the form of these
S expressions will also depend on the stream index and the particular input face
being considered. However, for the 8-stream model we have a simple expression
that is the same for all streams and all faces. For a more complicated scattering
model, we turn to the next most complicated case, the 24-stream S4 quadrature.

2.5.7 24-Stream Example

For the S4 case using the LSE quadrature (Fiveland (1991); Lewis and
Miller (1984)), each stream is composed of two components with magnitudes
of a = 0:3500212, each, and one component with magnitude b = 0:8688903.
Thus, � = a=b = 0:4028370 = �. This results in a slightly more complex
equation set than produced for the S2 set. Let us de�ne  = 1�� = 0:5971630.
Then, (suppressing G function dependencies on � ),

Im =

�
�

G2

2
+ �2

G3

3

�
(IX + IY ) +

�
2G1 + 2�

G2

2
+ �2

G3

3

�
IZ : (62)

The scattering source term (Jms) for this case is the same as given in Eq. (55),
except that w = 1=3 for each stream under S4. It then remains to determine
the energy exiting all three output faces for this stream. Notice that two of the
output faces have stream cosines of a and a mean transmittance value that is
di�erent from that for the third output face. These considerations lead to the
expression,

Ems = b
�

6
L(� )$�2 �

6
~P (�ms) Im; (63)

where
L(� ) = 1 + 2�� 2G0(� )� 4�G1(� )� 3�2G2(� ): (64)

Due to the symmetries of the S4 case, the scattered energy as a function of
direction only depends on ~P (�ms) Im, since the remaining factors are only
dependent on � . Thus, again, Ems is summed over all scattering directions,
and as before, only the zero-th order Legendre polynomial has a nonzero
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contribution, such that the total volumetric di�use scattering produces an
output energy of,

ES = �2b
�

6
L(� )$ I = �2b

�

6

�
L (� ) $ I

�
; (65)

which depends on only the incident energy and the optical depth of the medium.
Similarly, the incident energy and the transmitted energies only depend on the
optical depth, as,

EI = �2b
�

6
[� (IX + IY ) + IZ ] ; (66)

ET = �2b
�

6
[Ta(� )� (IX + IY ) + Tb(� ) IZ ] ; (67)

where
Ta(� ) = G1(� ) + �G2(� ); (68)

Tb(� ) = 2G0(� ) + 2�G1(� ) + �2G2(� ): (69)

Combining terms, the net energy unaccounted for via transmission and
volumetric scattering can be expressed as,

EI �ET �ES=$ = �2b
�

6
[� (IX + IY ) [1� �a(� )] + IZ [1��b(� )]] ; (70)

�a(� ) = L(� )

�

G2(� )

2
+ �

G3(� )

3

�
+ Ta(� ); (71)

�b(� ) = L(� )

�
2G1(� ) + 2�

G2(� )

2
+ �2

G3(� )

3

�
+ Tb(� ): (72)

The terms �a(� ) and �b(� ) represent the fractional e�ciencies of the scattering
model, as plotted in �gure 10. Standard inputX- and Y -type faces (those where
the cosine of incidence is a) are handled using Sa = 1��a(� ), and Z-type input
faces (those with a cosine of incidence of b) are treated using Sb = 1 � �b(� ),
where these S factors are used as the fractional amount of energy arriving at
a surface that must be scattered/absorbed in a surfacelike event to maintain
energy conservation.

The di�erent scattering e�ciencies arise because the cosine of incidence results
in di�erent mean path lengths through the media depending on the surface
of entry. For the 24-stream case, one of two angles of incidence are possible.
For the `b' case, there is a greater average illumination within the volume, but
this is o�set by the lower average transmittance. The net result is that �b(� )
has a uniformly lower e�ciency than the result obtained for the S2 order case.
This result is obtained even after accounting for the larger � in the S2 case
(�2 =

p
3�� versus �4 = ��=0:8688903).

Interestingly, the �a(� ) curve resembles the behavior of the single S2 case curve.
Perhaps because the �a curve represents a smaller cosine with the entry surface,
while the transmittance is increased, the path radiance is reduced, and the
overall performance roughly tracks that of the S2 order case. The net e�ect is
a similar behavior (in terms of overall e�ciency) of the 24-stream case to the
8-stream case.
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Figure 10. Fractional e�ciencies of the 24-streammodel using volumetric e�ects.
The `A' curve represents the �a function, while the `B' curve is the �b function.

2.5.8 48-Stream Case and Beyond

Beyond the 24-stream case, there are increasing numbers of equations required
to account for the e�ciencies of each scattering stream. For the 48-stream
approximation there will be four independent accounting expressions: two for
each of the two unique weighting structures. In the 80-stream case there are
three unique weighting structures. The �rst of these has two unique curves;
the second has three unique curves since each component is a di�erent weight;
and in the third case there is one unique curve, since all components are equal.
There are thus a total of six formulas to evaluate. Obviously, any economies to
be gained through symmetry would be rather limited compared to the added
complexity of the handling routines once a high order Legendre expansion model
is chosen.

2.5.9 Accounting for the Missing Flux

Given that the means of accounting for missing ux is through surfacelike
interactions, how should one approach the problem of correcting the radiance
values to restore the missing ux? As a sample case, let us consider radiance
arriving at an X-type interface in the 24-stream case (cosine of incidence with
the surface normal is �m = a).

We have already decided that the amount of ux to be scattered at such
a surface (ESX;m) should be proportional to Sa(� ) and the incident ux.
We also know that the scattering process itself is proportional to the single
scattering phase function ~P (�ms), since we are working in a single scattering

paradigm. And recall that 
̂m and 
̂s are the incident and scattered radiance
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propagation vectors, respectively. Also we assume that ESX;m can be related
to some fraction, #X;m, of the overall radiance falling on that surface. These
considerations lead to the equation:

ESX;m =
4�wm
8

j�mj�2 #X;m IX;m; (73)

where IX;m is the mean incident radiance at that face for stream m.

Since we assume the surface scattered radiance (ISS;s;m) at this interface equals

ISS;s;m = $#X;m IX;m (4�wm=8) ~P (�ms); (74)

then the total ux scattered at the surface due to stream m will be,

ESS;m = �2
X
s

4�ws
8

j�sj ISS;s;m = $
ESX;m

j�mj
X
s

j�sj �ws
2

~P (�ms): (75)

One can easily verify that this result actually does disperse the correct amount
of ux in the 8-stream conservative isotropic scattering case (where ~P (�ms) =
(4�)�1) case. Here we have wm = ws = 1, j�mj = j�sj = �, $ = 1, s = 1 : : : 8.
The result of the summation in Eq. (75) is then just �, and the net equation
shows that ESS;m = ESX;m.

In general, the results can be characterized by,

ESS;m = $ESX;m

X
s

j�sj
j�mj

4�ws
8

P (�ms) = $KX;mESX;m: (76)

The terms KX;m thus represent an integration e�ciency over the input face,

KX;m =
X
s

j�sj
j�mj

4�ws
8

P (�ms): (77)

Similar coe�cients will exist for Y-type and Z-type surfaces. Optimally, one
would expect the KX;m, KY;m, andKZ;m terms all to equal unity, but due to the
choice of the symmetry set and peculiarities of the phase function representation
itself, suboptimal conditions may exist. In our example, then, the total ux
dispersed at the X-type interface is modeled as KX;mESX;m.

Returning now to the calculation of ux unaccounted for due to volumetric
e�ects, let us generalize equations such as Eqs. (71-72) and (61), where we let (for
example) 1��X;m be the fractional ux on input face type X of stream m that
must be accounted for via surface e�ects. Comparison between the development
above and results such as Eq. (71) shows we must have #X;mKX;m = 1��X;m;
that is,

#X;m =
1� �X;m
KX;m

: (78)
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The net result is that at a given output surface and for a particular output
stream, the total surface scattering contribution to that stream is determined
by summing over all streams at that surface. The fractional contribution of each
stream will depend on the �X;m value for each input stream. Continuing the
X-type surface example we have,

�IS;X;s =
X
m

$m
4�wm
8

#X;m ~Pm(�ms) IX;m: (79)

This surface incremental portion is then added to the transmitted and volumetric
scattered ux computed via the methodology described previously. Note that
$ is considered a function of the stream (as are # and P ) because the behavior
of a given stream at a given surface depends on the direction in which the
input stream is owing across the surface (which volume element the stream is
entering), regardless of the directionality of the output stream.

2.6 Direct Radiation Considerations

The previous section assumed the radiance of di�use streams was constant
over any input face of interest. This assumption allowed the `simple' forms
for transmission, emittance, and surface scattering fraction to be derived
analytically in the cases studied.

However, this assumption may not be reasonable for direct (solar/lunar)
radiation, due to the relative dominance of direct sources of energy at visible
wavelengths. Typical boundary conditions for a 4-km high atmospheric volume
yield direct spectral irradiances on the order of 1200 to 1400 W/m2-�m in the
visible, while the di�use spectral radiances are on the order of 30 to 100 W/m2-
�m-sr. The di�erences in importance between these two sources indicates a
distinction should be made in processing these for radiative transfer calculations.
For example, Zardecki (1995) proposed a separate LOS computation to trace
the optical depth of direct illumination reaching the center of each cell in his
radiative transfer algorithm.

2.6.1 Cell Face and Volume-Averaged Illuminations

In the surface-based model discussed here, it would not be appropriate to trace
lines of sight to a cell center but rather to evaluate the average illumination
on each of the three direct radiation input faces to each cell. This can be
accomplished by sampling over each of these surfaces and forming an average
transmittance between the modeled volume upper boundary (assuming the Sun
or Moon are the only direct sources considered) and the speci�c cell wall. In
addition, one can determine the mean illumination provided to the cell by
knowing the path length that each sampled pencil of light traces out as it passes
through the cell. Integrating over each input surface, one can determine the
e�ciency of direct radiation entering each face of each volume element. This
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indicates the fraction of direct energy scattered at each surface. From these
calculations, one may determine the net direct surface scattering source term at
each face within the volume.

Let the azimuth and zenith angle to the source of direct radiation be speci�ed
by �0 and �0, respectively. Then the direction of propagation of the direct
illumination is

b
0 = f� sin(�0) sin(�0); � cos(�0) sin(�0); � cos(�0)g: (80)

Here note that the azimuth angle is given in geographical units measured from
the North (the Y-axis) and increasing toward the East (X-axis).

For each cell, there will be at most three surfaces exposed to direct radiation
(we ignore the �nite solid angle subtended by the source and treat it as plane
parallel energy). A series of ray traces from di�erent sample points on the
surface upward to the volume boundary are made for each of the three faces to
determine the average transmittance of direct radiation through the volume to
these surfaces.

For each sample point on a cell, i, there will be a net transmittance starting
at the overall volume's upper boundary and continuing through the volume to
the cell wall of interest. Call this transmittance factor Tin;i. Secondly, there
will also be a distance that unscattered energy arriving at this sampling point
would travel to reach an exit side of the cell volume in question (Di). If the
sample volume has an extinction coe�cient �, then the direct radiation exiting
the volume through this pencil of light will experience a total transmittance of,

Tout;i = Tin;i exp(��Di): (81)

The mean illumination provided to the volume by this pencil of light will depend
on the number of samples N taken over the input face, the face area �2, and
the cosine of the pencil with the surface normal (call this j�0j), Tin;i, and Tout;i.
The volume illuminated by the pencil (Vi) will be

Vi = Di j�0j�2=N: (82)

The average value of the illumination due to this pencil of illumination will then
be

A0;i =
A0

j�0j
[Tin;i � Tout;i]

�Di

Dij�0j�2=N

�3
=

A0

N

[Tin;i � Tout;i]

��

j�0j
j�0j ; (83)

where the illumination over each sample is averaged over the full volume (�3),
and where A0 is the boundary irradiance (W/m2-�m) which has an implicit

multiplication by j�0j (the cosine of b
0 with the vertical). The total illumination
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provided to the cell via this input surface is then found by summing over all
sample illumination components:

�A0 =

NX
i=1

A0;i: (84)

In the computer implementation of this approximation, computations over each
input face are made at successively higher N values until the solution settles to
a stable result. The results of these calculations are the mean illumination to
each cell due to each input surface ( �A0), the mean transmittance to each cell
surface,

T in =
1

N

NX
i=1

Tin;i ; (85)

and the mean transmittance to the far side of the cell due to energy passing
through each input surface,

T out =
1

N

NX
i=1

Tout;i : (86)

Given that the direct radiation is modeled as an irradiance (energy per square
area perpendicular to the vertical vector, which we then transform into a result
appropriate to a plane perpendicular to the direction of propagation by dividing
by �0) with a directionality in the form of a delta function in the direction of
propagation, then the scattering into some output stream is proportional to
P (
̂j ; 
̂0). Also, similar to the results obtained for the di�use method, one
may integrate over all output streams over every face of the volume element to
obtain the net energy scattered due to input direct radiation entering along a
given input face. The mathematics of this process are similar to those of the
di�use case and will not be repeated here, but the results are similar. Each
face can be assigned a particular e�ciency factor (�0) indicating the amount of
energy that must be scattered via a surface process proportional to (1��0). We
thus have an accounting method for volumetric and surface-based contributions
of direct radiation to the di�use streaming radiances.

2.6.2 Earth Curvature Considerations

One consideration of particular signi�cance to direct radiation calculations is
how to account for the Earth's curvature. For highly oblique angles of incidence
of direct light (near Sunset/Moonset or Sunrise/Moonrise), the e�ects of the
curved Earth become signi�cant. How does one trace a path through the
volume of near-in�nite length when the Sun is at nearly 90� zenith angle?
In particular, it is advantageous when running the radiative transfer model to
impose horizontal periodicity on the modeled volume. This means potentially
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tracing through many copies of the same volume in tracing a line of sight toward
the Sun.

To avoid the possibility of in�nite loops, two steps are taken in the computer
model. First, the code is only callable from its front end processing program if
the Sun or Moon is above the horizon. Second, a correction is made to account
for the curvature of the Earth when ray tracing. This correction is based on
a parabolic approximation of the earth's shape where it is assumed that the
modeled region dimensions are small with respect to the radius of the Earth.

For this development, we let the nominal radius of a spherical Earth be �xed at
RE = 6371 km. To determine the amount of correction to be made at each step
in the ray tracing process, one can imagine an observer at height z above sea

level observing the Sun in an initial direction �b
0 = f��0; ��0; ��0g. This
scenario is shown in the diagram in �gure 11.

Figure 11. Modi�cation of the solar zenith angle with respect to the gravity

vector upon stepping along a path out of the atmosphere in the direction of the

direct source.

Let us now place an observer a distance z above the Earth's surface and let us
de�ne an Earth centered coordinate system; call it X0. We can then always
draw the x and y axes such that the observer position is at the x-y origin: (0,
0, z +RE). We now step a distance D along a line of sight in the direction of
the Sun to point (��0D, ��0D, ��0D + z + RE). Now, de�ne the horizontal
distance, H, moved across the Earth's surface during this step along the line of
sight:

H = D
p
�2 + �2:
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The new location will be a fraction of an Earth radius away from the original
point and thus will have a di�erent direction for its gravity vector.

We have already seen the relationship between b
0 and the zenith angle �0. At
this new point we can again place an observer a height z0 above the surface in
a new Earth centered coordinate system X 0. To �rst order this new height will
be

z0 = z � �0D: (87)

But, due to the shift in position across the Earth's surface, and the consequent
change in the direction of the gravity vector, the zenith angle to the Sun will be
modi�ed to

�00 = �0 �H=(z +RE):

Therefore, the apparent elevation angle of the Sun must be modi�ed continuously
along the line of sight to simulate this change in direction with respect to the
gravity vector at each point. Here we assume that over the span of the particular
scattering volume of interest the change in the zenith angle is so small that it
can be neglected in terms of propagation code accuracy, and that we may begin
each trace using the same angle.

The scattering volumes to be studied are actually quite small with respect to
this curvature, so the e�ects of this correction are only truly important when
computing Tin;i for a scattering model employing horizontally periodic boundary
conditions. For example, consider a scattering volume that is 4 km on edge
horizontally and 4 km thick vertically. Assume an observer at zero height views
the Sun at the horizon (arguably a worst case). Then, for each pass through the
scattering volume we would have,

d�0 � � 4

6371
= �0:6278 mrad:

This result, in milliradians, may appear very small, yet the cumulative e�ect is
such that the line of sight is 5 km above the surface within 250 km, and 20 km
above the surface within 500 km. This indicates that we have bounded our
problem, but improvements can be made.

2.7 Output Face Calculations

The expressions obtained thus far exhibit energy conservation. They also exhibit
what is believed to be the proper behavior of the scattered energy in volumetric
or surface-based terms in that the modeled energy is distributed according to
radiance by direction such that it is proportional to the phase function. But, it
remains to cast these results as they relate to the output face di�use radiances.

To proceed, we formulate an equation set that accounts for all the energy that
should contribute to each output stream. The components are: (1) di�use
transmitted energy from each of the three appropriate input faces, (2) volumetric
di�use scattering based on average volume radiance for each stream, (3)
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volumetric black body emittance, (4) surface-based scattering of energy from

all di�use streams arriving at the given face, (5) volumetric scattering of direct

irradiance energy based on volume averaged irradiance, and (6) surface-based

scattering into the given stream. This step is termed the iteration on the

scattering source (Zardecki (1995); Lewis and Miller (1984)), where at the nth

stage of the process the di�use energy incident at a cell's boundaries may be

viewed as the total di�use radiance resulting from (n � 1) scatterings.

For example, if we consider an output X-type face for stream s propagating into

the �rst octant, we have,

Iout;X;s = ITout;X;s + (1 � �TX;s)Ls + �IS;X;s; (88)

where ITout;X;s is the transmitted radiance,

ITout;s =WX;X;sT�X;+X Iin;X;s

+WZ;X;s T�Z;+X Iin;Z;s

+WY;X;s T�Y;+X Iin;Y;s: (89)

Here the W 's are areal weighting factors introduced in table 3. The term

�IS;X;s represents the surface scattering contributions of both direct and di�use

scattering for an X-type output surface for stream s.

And lastly, the limiting path radiance Ls is

Ls = $
�

2

X
m

wm ~P (�ms)�Im +B +$ ~P (�0s) ( �A0X + �A0Y + �A0Z); (90)

where �ms = 
̂m �
̂s, �0s = 
̂0 �
̂s for the direct radiation scattering, and where
the �A terms are the mean volume illuminations due to direct energy entering

through the x, y, and z input face for direct radiation. Similar expressions apply

for streams travelling in other octants and out other types of faces.

In conclusion, the analysis leading to Eq. (88) began at the end of section 2.5.4,

where we were looking simply for an expression for the limiting path radiance,

Ls. But, we found that the volumetric method alone could not account for

all the energy. Further consideration of the problem led to a surface-based

correction and a means of treating direct radiance e�ects. We thus now

have a full theoretical description of the scattering, emission, and absorption

process. We then conclude this chapter with a brief description of the computer

implementation of this theory.
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2.8 The Atmospheric Illumination Module

The Atmospheric Illumination Module (AIM) is a computer implementation
that runs the radiative transfer model described in the previous sections to
characterize a portion of the lower atmosphere. AIM is thus an interface that
runs the RT code at various wavelengths, sets up the input, and postprocesses
the code output. The actual RT code which was described previously has
been named BLITS (Boundary Layer Illumination and Transmission Simulation).
The AIM routine is designed to run BLITS in several di�erent modes. These
modes primarily are designed to speed its execution, but also to permit greater
exibility in the setting up of run conditions and scenarios that can be processed.

In the immediate predecessor to the AIM/BLITS modeling system, Zardecki's
BLIRB model (Zardecki 1995) combined some features of the AIM preprocessing
functions in with the radiative transfer modeling stages. That is, BLIRB mixed
aerosol and Rayleigh scattering properties within the model itself. Thus, when
aerosol properties were speci�ed, they had to be separately mixed for each
vertically di�erent layer since the molecular properties varied with height. Each
cell was then characterized by a given scatterer type. This allowed indexing of
scattering properties by cell position.

This method had to be improved because BLITS requires more information to
run than BLIRB. Notice that the low-density transfer Eqs. (26) and (30) require
only values of s and �. And, since s is a function of the stream direction,
it is simply computed and stored, and � is also a single value per cell. But,
the BLITS approach requires storage of information on the surface scattering
e�ciencies (#), the face-to-face and face-averaged transmission factors (various
T terms), and the volumetric scattering source factors (� factors).

By moving the cell characterization processing out of the RT model and into
a preprocessing stage, it was possible to improve the characterization of the
model volume with fewer scattering types. To achieve this preprocessing step,
we began from a Legendre expansion point of view. To completely describe a
scattering/absorbing/emitting cell, all the properties of the cell are completely
described by the quantities: � and $�X`, ` = 0 ... L. (X` is de�ned in Eq. (19),
as modi�ed by the scaling transformation. In general L is set to N , the order
of the stream expansion.) Thus, each cell is completely described (for a given
wavelength) by a vector of dimension L+ 2.

Using this 3D set of vectors, the main AIM processor runs a pattern recognition
clustering model that groups these vectors into `classes' of vectors, each
describable by a mean vector. Thus, AIM can transmit the mean vector
information for each class to the BLITS code along with an index value which
assigns each cell to one of the classes. The scattering properties for a given cell
are then indexed to the mean vector associated with that class. To perform
the processing, initially, all the vectors are grouped into a single class. The
clustering algorithm then iterates such that in each pass the class with the
greatest variance in its components is divided along the major axis of its greatest
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variance components, and two daughter classes are produced. Each sample is
then compared against the centroids of each class, and a new class is assigned
based on the distance of that sample to the closest class centroid. Once all
samples have been reassigned, new centroids and variances for each class can
be recomputed based on the current elements of each class. In each iteration, a
new class of aerosol is created. That is, a new centroid vector describing aerosol
properties in its vicinity is created. This iteration process continues until a user
selected maximum number of classes (centroid vectors) is produced, or until
there is no more variance in any of the classes. The class identity of each cell
at the end of this procedure is then passed to BLITS in order to populate the
scattering volume. The mean vector component values for the class centroids
are also passed to characterize each scattering aerosol indexed in the volume
population table.

The pattern recognition preprocessing stage of AIM thus optimizes the
representation of the scattering volume with respect to a series of aerosol classes.
These classes allow for a reduction in the total amount of data that must be
stored by limiting the transmittance, illumination coe�cients, etc. to only those
listed according to aerosol classes. However, additional data storage compression
is also possible by exploiting symmetries in each class of stored aerosol data.
These symmetries arise because each octant of the angular scattering space will
have identical transmittance properties between input and output faces. The
di�erence is in the orientation of the input and output faces. Similarly, within a
single octant, due to the discrete ordinate technique, the di�use streams oriented
in primarily x, y, and z directions will exhibit similar characteristics for di�use
scattering and transmittance properties.

To exploit these properties, all internal arrays are computed in terms of the
so-called standard conditions. This means that all results are computed for the
�rst octant (stream owing in the positive x, y, and z directions) and oriented
such that the z-axis component, �, is greater than or equal to either the x� or
y-axis components. Results obtained are then accessed by indirect addressing.

Though this system only exhibits a maximum compression factor of 24 for the
representation of cell scattering information, it does represent some savings.
However, by far the largest contribution to the data requirements for the model
are for holding the positional/directional data. Typical runs on a 64 Mb work
station entail a 32�32�16 x-y-z cell structure with 24-stream angular resolution
and a factor 3 multiplication to account for stream values at each X, Y, and Z
input walls.
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3. Monte Carlo Model Comparisons

The purpose of any RTMonte Carlo model is to generate high-accuracy statistics
concerning scattering, since the ability to control the scattering e�ects is greater
than that possible by solving the radiative transfer function directly. That is, the
ability to describe the phase function is not limited according to the number of
streams that must be represented in the results if we are only concerned with ux
outputs. Therefore, an In-house Monte Carlo (IHMC) code has been developed
to characterize scattering scenarios under various propagation conditions.

The primary di�culty with a Monte Carlo approach is the time required to
generate these statistics to a desired degree of accuracy. Since Monte Carlo
methods depend on generating statistics which describe the scattering process,
photon noise is the controlling factor in determining the number of iterations
necessary to produce a statistical solution to a speci�ed degree of accuracy. But,
this implies that we would like to know how accurate a statistic is at any point
in the solution process so that we know when to stop iterating. We therefore
present a method of computing the solution accuracy in section 3.1. Section 3.2
then provides a short description of the model, and section 3.3 discusses model
validation tests.

3.1 Assessing Photon Noise Statistics

Due to the weak law of large numbers (c.f. Stark and Woods 1986), the solution
with a given number of samples can be tested to determine whether it exceeds a
�xed degree of accuracy. With this knowledge, a Monte Carlo code can be easily
written that produces resulting statistics to arbitrary accuracy. Of course, higher
degrees of accuracy require longer compute times, proportional to the number
of samples. Highly scattering ($ � 1) dense media require increased compute
times because the number of collisions per photon prior to exiting the volume
is a function of the optical depth. Depending on the medium, the number of
collisions may be on the order of hundreds per photon for cloud-type aerosols.

The weak law of large numbers states that for a set of independent and identically
distributed (IID) random variables (RVs) Xn with mean � and variance �2, if
we do not know the mean of this distribution (�) a priori, we can know that an

estimate of the mean, �̂N =
PN

n=1Xn=N , will approach the true mean as the
number of samples (N) approaches in�nity. In our Monte Carlo propagation
model, the Xn variables represent sample uxes exiting through the six walls of
the sample volume. These Xn's are created by producing packets of photons,
1000 in each group. For each packet of 1000 photons, we determine how many
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exit each wall and divide by the total to produce six statistics. Each of these
six is a di�erent random variable, but multiple packets should have IID RVs
for each exit wall. Since the mean uxes from each exit wall is what we are
attempting to �nd, we can produce a sample mean for each wall by averaging
the results of multiple packets as above.

The next step in the analysis involves the use of the Chebyshev inequality. Here,
we treat �N itself as a random variable. According to the weak law of large
numbers, the mean of �N should be just �, and the variance is �2�N = �2=N . The
Chebyshev inequality is then invoked, which furnishes a bound on the probability
of a random variable deviating from its mean by an amount �:

P (j�N � �j � �) � �2�N =�
2: (90)

The term �2�N =�
2 thus furnishes an upper bound on the extent of the error in

estimating the mean. If we then �x the accuracy (A2) that we desire in the
answer, and evaluate � relative to the value of the sample mean itself (� = � �N ,
where � is a fractional accuracy required, assuming �N > 0), then we know that
we can ensure a given level of accuracy in our solution by requiring:

P (j�N � �j � �) � �2�N =�
2 =

�2

N �2 �2N
� A2: (91)

We know, then, that we can stop acquiring additional samples whenever

�p
N ��N A

� 1: (92)

In the algorithm developed, � was set to 0.02 and A was set to 0.5. Due to the
nature of the criteria above, it is the product of these two that is signi�cant.
Thus, instead of considering the results as a 2-percent accuracy (100�) to a 75-
percent con�dence level (100 (1�A2)), the results could equally be viewed as a
5-percent accuracy to a 96-percent con�dence level (� = 0:05, A = 0:2), etc. In
other words, the solutions we seek have a probability of less than 25 percent of
deviating more than 2 percent from the actual solution, and a probability of less
than 4 percent of deviating more than 5 percent from the actual solution. In
the implementation these restrictions become even more stringent because we
only consider the worst case ux. That is, the smallest ux will usually have
the largest fractional error and will require more model iterations to satisfy
the convergence criteria than uxes from the remaining �ve faces. Thus, the
accuracy of the remaining �ve faces will always exceed the threshold while the
accuracy of the sixth surface will at least meet the threshold convergence.

Note �nally that �2 is not known a priori and is also an estimate, but with the
number of samples required under the Monte Carlo method, we generally have
a very good estimate for this value as well whenever we have met the above
criterion for �N accuracy.
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3.2 Model Overview

The Monte Carlo model developed to implement the above strategy was written
in the C++ language. It was designed to generate statistical fractional energy
ux information for photons passing through a scattering volume and out one
of the six sides. C++ is an object-oriented programming language (c.f., Lafore
1991), and as such, several di�erent object classes were designed to simulate
the various phases of the scattering process. Several di�erent phase function
types were programmed into a phase function object class. Options included a
Henyey-Greenstein phase function and the Deirmendjian type-C.1 cloud phase
function for a wavelength of 0.45 �m. The propagation of photons was handled
through the development of a ray object class. In this class, a phase function
could be accessed to determine the angle of scattering (deection) of the photon
from its current path at the point of collision. Other classes were developed to
handle the bookkeeping of photons passing through various wall sections within
the scattering volume, angular information, positional information, etc.

3.3 Model Validation/Comparisons

To verify the validity of the IHMC model, test runs have been compared with the
results of McKee and Cox (1974). In �gures 12 through 14, the outputs of IHMC
are compared with output of the McKee and Cox (M&C) Monte Carlo model,
as derived from �gures 3 through 5 of their paper. Comparisons are made for
incident zenith angles of direct radiation of 0�, 30�, and 60�, respectively. The
original data of M&C were modi�ed to include directly transmitted radiation,
based on an estimate of the optical depth of the cell for each their data points.
These corrections were made using the transmittance equations given in chapter
2 and the zenith angle of the direct radiation relative to the normal to the top
of the scattering volume. From their data, it appears that volume single-axis
optical depths of 5, 10, 15, 25, 50, and 73.5 were used by M&C.

The M&C scenarios consisted of a cubic volume �lled with a uniform
conservative scattering material characterized by a phase function obtained from
Deirmendjian (1969) for a type C.1 cloud at a wavelength of 0.45 �m. This is a
phase function simulating a cumulus-type water cloud. Conservative scattering
was assumed in all calculations.

Comparison of the results in the three �gures indicates IHMC closely follows the
M&C data. Slight di�erences are seen for the energy exiting the volume sides
for the 60� zenith angle case, but here the di�erence may be in the corrections
applied to account for the amount of direct energy passing through the volume.
The exact values of the optical depths used by M&C were not reported, except
for the maximum optical depth case (73.5). Another explanation is that the
M&C data may be slightly in error: Davies (1978) reported small discrepancies
when he compared his own results with the M&C calculations and attributed
the di�erences to weaknesses in the M&C algorithm. Note, for example, that in
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Figure 12. Scattered and transmitted energy exiting from a cubical volume.
Symbols represent M&C data modi�ed to include transmitted direct energy.
Curves represent IHMC results. Incident energy is a plane parallel beam striking
the top of the volume with a normal incidence.

Figure 13. Monte Carlo comparisons similar to previous �gure except incident
energy strikes the top with a zenith angle of 30� relative to the normal. Incident
radiation strikes top and one side of the volume.

�gure 14 the geometric result for energy exiting through the sides at zero optical

depth should be 63.4 percent. The trend in the corrected M&C data is for less
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Figure 14. Results similar to previous �gure except that incident energy strikes
the top with an angle of 60� relative to the normal. Incident radiation strikes
top and one side of the volume.

than 60 percent to be owing out the sides. Similarly the geometric result for
energy exiting the volume base should be 36.6 percent. Both of these targets
appear consistent with the trends at low optical depth for the in-house model.

From these �gures, there is a determination that IHMC achieves a reasonable
performance when compared to the M&C results. Further, since we can
control the exact model speci�cations for the cases of comparison, there is no
question regarding what optical depths to apply in running the BLITS code.
The IHMC model will thus be used henceforth for comparisons with the BLITS

code. However, we will restrict the application of IHMC to only those scenarios
described by M&C, for which we have direct veri�cation that the code is valid.
(Note: we compared results using the BLITS model because M&C dealt with
speci�c uniform density media. AIM generates input data for general atmospheric
conditions and would be inappropriate for comparison.)

3.4 Analysis

The results of the BLITS code were compared to those of the IHMC code for
each scenario studied by M&C. Results were obtained from the Monte Carlo
code using the full Diermendjian C.1 phase function. BLITS results were
produced using modi�ed Legendre expansion coe�cients of the phase function
such that the forward peak was removed via one of two di�erent scaling
transformations. The �rst transformation was the �-M method proposed by
Wiscombe (1977). The second was the log-least-squares (LLS) method described
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in the appendix. The second method was developed to suppress higher order
Legendre components, thereby avoiding negative values in the phase function
approximation. These negative values can lead to erroneous predictions of
stream radiances.

Comparisons were made for various levels of resolution of the calculation grid
for the cubic scattering volumes used by M&C. These calculations show the
overall robustness of the method. The walls of the volume were considered to
be bounded by a non-reecting/non-emitting void. The external illumination
consisted of a plane parallel source incident on the top and one side of the
volume (virtually a cubical gas in deep space). The cases considered varied
the medium's single-axis optical depth and the zenith angle of arriving direct
radiation. Results were computed for direct energy incident at the top of the
volume and striking the eastern side from 0�, 30�, and 60� zenith angles. We
did not use the M&C data, except for comparison. Instead, we computed results
using IHMC and BLITS for single axis optical depths of the medium of 5, 7.5, 10,
12.5, 15, 20, 25, 37.5, 50, and 75.

In �gure 15 we compare the 0� zenith angle incidence direct source case for ux
reected o� the top of the modeled volume using IHMC and BLITS with varying
numbers of cells. This �gure is based on BLITS runs using the �-M method,
and the results show that, even with a nominal 35 optical depths per cell, the
2�2�2 coarseness calculations produce reasonable results. Figure 16 shows the
same output for the LLS method described in the appendix. Note that the LLS
method appears not to predict results as well as �-M at the 2�2�2 resolution,
but appears to approach the IHMC results asymptotically as the resolution is
increased.

Figures 17 through 20 show details of the uxes emitted from the sides and
bottom of the scattering region at di�erent computation resolutions for the
�-M and LLS methods for the same 0� incident scenario. As can be seen,
while the performance of the algorithm appears robust and seems to operate
e�ciently for both the �-M and LLS methods, the LLS approach appears to
slightly outperform the �-M results at the higher resolutions, which we assume
behave in an asymptotic fashion. Similar results were obtained for the M&C
cases of 30� and 60� angles of incidence of the direct radiation beam. In all cases
studied, the LLS method appeared to outperform the traditional �-M approach.
The primary factor for this increase in performance is attributed to the nature of
the phase function and the limitation imposed that only a 24-stream model was
used. For this case, the �-M corrected Legendre expansion of the phase function
produces negative phase function results in 8 out of 24 di�erent scattering
directions. These negative values produce negative stream values after the direct
radiation scatters into these directions. Once these negative radiances are in
place, they then disrupt the overall evaluated ux statistics. Introducing more
streams would solve the problem of the negative radiances because a higher
order Legendre expansion could be used, but this would require larger system
memory and slower model operation.
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Figure 15. Comparisons for the �-M method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume top.

Figure 16. Comparisons for the LLS method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume top.
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Figure 17. Comparisons for the �-M method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume sides.

Figure 18. Comparisons for the LLS method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume sides.
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Figure 19. Comparisons for the �-M method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume base.

Figure 20. Comparisons for the LLS method at varying cell resolutions of the
scattering volume for 0� zenith angle incident direct energy for energy exiting
volume base.
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However, disregarding for the moment any di�erences between the LLS and �-
M performances, the primary characteristic of these results is that the BLITS

scattering algorithm appears to approximate the Monte Carlo model outputs
to a high accuracy at all optical depths for the 43 and 163 cases. The worst
case (the 0� ux exiting the volume sides) fails at the two-cell approximation
simply because two cells per axis are insu�cient. Certainly the four-cell case
has much better performance at 70 optical depths than does the two-cell model
at 17 optical depths, even though these two cases have roughly the same optical
depth per cell. This indicates that the overall success of the model seems to
depend on the feedback produced by su�cient numbers of lattice walls interior
to the modeled volume.

3.5 3D Segmented Cloud Cases

Analysis of the BLITS model performance in the M&C cases revealed that two
cells per axis was insu�cient to fully test the viability of the model, since the
model relies on interaction between scattering e�ects at di�erent interior walls
within the modeled volume. But, with the elimination of the single cell and
two-cell-per-axis cases, the maximum optical depth per cell that is treated is
75/4=18.75. This number is relatively low when compared to the optical depth
of a typical scale cloud pu� of 1/4 km on a side. In order to test the model at
higher aerosol concentrations, a set of modi�ed scenarios had to be developed.
But, these new scenarios should have certain characteristics. It would be possible
simply to run uniform volume cases like the M&C scenarios, but at much higher
optical depths. And, while this course has some merit, it does not address
the issue of multiple scattering interaction between di�erent cloud elements.
Further, there is no consistency check on the results obtained to ensure that there
is not some aw in the technique at higher optical depths. Another possibility
is to devise a means of concentrating the aerosols into fewer cells, creating gaps
between the di�erent cloud elements, and thus permit testing of cloud-to-cloud
scattering interactions.

The result of these considerations was a method which conformed to the M&C
scenarios in one limit, but which modeled separate cloud sections as a function
of a pair of related separation parameters, q and P .

Let the overall modeled volume be described by a cube of unit length (1 km)
on each axis. Then, de�ne the quantity q as a fractional length and divide the
volume into eight cubes, one each with an outer corner positioned in each corner
of the overall volume, as shown in �gure 21. The parameter q measures the
single-axis fractional length of each of the eight scattering subregions within the
overall volume (0 � q � 1=2). The remainder of the overall volume is considered
vacuum. The fractional distance along a single axis from center-to-center of two
of these cubes is 1� q. We then introduce the parameter P as P = q=(1 � q),
which varies between 0, where all the scattering material has been compressed
into the eight corner regions, and 1, where the scattering material is uniformly
distributed over the entire scattering volume. Thus P = 1 corresponds to the
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M&C scenarios and P = 0 corresponds to a vacuum condition. We thus have
complete information about the bounding behavior of the scenarios proposed and
can investigate the intermediate behavior to see that it smoothly transitions by
varying the P parameter.

Figure 21. Cloud subregion con�guration within the overall scattering volume
utilizing q and P parameters.

Figures 22 through 30 illustrate the di�erent uxes (top, base, and sides) for
the three di�erent incident ux zenith angles. The optical depths in each
scenario have been normalized to the uniform density scatterer case such that a
constant amount of scatterer is present in the overall volume as P varies. This
is accomplished by computing a modi�ed extinction coe�cient, �0 = �=(8 q3),
which accounts for the concentration of the scattering materials in the eight
corner regions. Note that as P decreases from unity more of the incident
radiation passes unscattered through the volume. This is signi�cant in the
analysis of results.

Using these Monte Carlo results as the baseline, we then proceeded to run the
BLITS model at a series of resolutions (number of cells per axis) for each scenario.
Similar to the previous �gures, we ran the model at 1, 2, 4, 8, 16, and 32
cell resolutions, hereafter referred to as the 13, 23, 43, 83, 163, and 323 cases,
respectively, in reference to the total number of cells modeled in the volume. We
used the same average densities per optical axis as in the previous cases run, and
set the P parameter to 1/3, 3/5, and 7/9, corresponding to q values of 1/4, 3/8,
and 7/16, respectively. Note that in all three of the new P value cases (P = 1 in
the original M&C scenarios), the 23 model resolution was incapable of resolving
the density variations. In terms of the analysis below, these cases are termed
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Figure 22. Fractional ux escaping from volume top for 0� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 23. Fractional ux escaping from volume sides for 0� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 24. Fractional ux escaping from volume base for 0� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 25. Fractional ux escaping from volume top for 30� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 26. Fractional ux escaping from volume sides for 30� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.

0

15

30

45

60

75
0.0

1/3

3/5
7/9

1.0

0.2

0.4

0.6

0.8

1.0

Mean Optical Depth

Fill Parameter P

Fractional Total Energy

Figure 27. Fractional ux escaping from volume base for 30� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 28. Fractional ux escaping from volume top for 60� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 29. Fractional ux escaping from volume sides for 60� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.
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Figure 30. Fractional ux escaping from volume base for 60� incident direct
radiation as a function of the P parameter and mean single-axis optical depth.

under-resolved. The 43 model, on the other hand, was able to critically-resolve
the P = 1=3 case. That is, in the 43 model each cloud segment occupied exactly
1 cell in the corner of the volume. In all other cases, the 43 model under-resolved
the cloud segments. For the 83 model, in the P = 1=3 case, each cloud segment
occupied a 23 cell region in each corner of the volume, and in the P = 3=5 case
each cloud segment occupied a 33 region in each corner. But, the 83 model
was unable to resolve (under-resolved) the cloud edges in the P = 7=9 case.
We thus were able to study several conditions: under-resolved cases where the
physical model was unable to resolve the density variations, critically-resolved
cases where the physical boundaries of the cells could just match the boundaries
of the cloud segments (for example, in the P = 1=3 case using the 43 model), and
those cases that were over-resolved (for example, the 323 model for the P = 3=5
case where both the regions containing the cloud segments and the gaps between
the segments were able to be modeled as more than one cell wide). The behavior
of BLITS under these various conditions allows the testing of the robustness of
the code in providing ux data under various degrees of stressing conditions.

However, following computation of these scenarios, it became apparent that
except for the 13 and 23 models which had already been shown to lack su�cient
numbers of cell walls to produce reliable results, the remainder of cases fell
decisively into only two groups: a �rst group containing all the under-resolved
cases, and a second group containing both the critically-resolved and over-
resolved cases. The under-resolved cases consisted of the 43 model results for the
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P = 3=5 and P = 7=9 cases and the 83 model results for the P = 7=9 case. In all
the critically-resolved and over-resolved cases, the model exceeded expectations
in producing very close results to the Monte Carlo run outputs for cell optical
depths up to 37.5 per cell (pre-scale transform optical depth). Even after the
scale transform, which reduced the extinction coe�cient by about 60 percent,
we were still treating up to 20 optical depths per cell in the worst case (the 43

model in the P = 1=3 case). For this case, we had an overall RMS error of
1.57 percent of the total ux. The results for all cases are shown in table 5.

Table 5. RMS errors for all cases run; under-resolved in brackets, critically-
resolved in parentheses, over-resolved without brackets.

P % RMSE

13 23 43 83 163 323

1/3 [22.8] [25.3] (1.57) 0.76 0.638 0.534

3/5 [11.4] [13.4] [12.9] (0.80) 0.714 0.597

7/9 [6.3] [6.3] [7.06] [6.86] (0.901) 0.858

1 (7.7) 2.5 0.98 0.93 0.857 0.934

To analyze the signi�cance and meaning of these results, we divide the
consideration of these results into low-, medium-, and high-resolution cases.
Figures 31 through 34 show the low resolution cases of the 13 and 23 models.
Since they are only resolved in the uniform density (P = 1) case, they illustrate
the situation of a cloud with spatial structure, which, due to the model spatial
resolution, nevertheless occupies only a single cell in the modeled space. One
interesting feature of the table is a comparison between the 23 and the single
cell model results for the P = 1=3 and P = 3=5 cases. Here, the single cell
actually outperforms the 23 model. The reason appears to be that the 23 results
do a much better job of characterizing the P = 1 case to the extent that they
are over-optimized. That is, in a sense, the 13 model appears to be doing the
job of representing an ensemble of di�erent density conditions that all map onto
a uniform density problem when expressed in a single cell model. Of course,
the low P cases have the volume almost empty of material and so represent
worst case conditions of applying the uniform cube model as a representation of
physical reality.

The next several cases consider the various results of the 43 and 83

characterizations. These cases are interesting because they provide a better
insight into the model behavior due to their greater numbers of interior cell
walls. They also illustrate critically resolved cases of P = 1=3 using the 43

model and P = 3=5 using the 83 model, both of which show excellent response
under high-density cell conditions. These results are given in Figures 35 through
40. One of the most interesting features is the similarity between results in the
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Figure 31. Uniform density media for the one cell model.

Figure 32. Under-resolved cases for the one cell model.

two cases, for even though the 83 model has additional exibility, the results

for the unresolved P = 7=9 case are very similar in both examples even though

the 83 model has a few of its inner cells with somewhat lower optical depths.

These results tend to indicate that natural clouds will be so optically thick that

their inuence will extend outside their volume if too coarse of a grain is used in

modeling the geometry of the cloud cellular structure. These extensions might,

under unlucky circumstances, result in inappropriate uxes reaching the surface.
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Figure 33. Uniform density media case for the 23 cell model.

Figure 34. Under-resolved cases for the 23 cell model.

In most cases, then, the e�ects of coarse grids will be an increase in estimated
cloud layer reectivity and a decrease in estimated net layer transmittance.
These observations have obvious implications beyond the domain of our present
problem because they indicate some of the weaknesses of 1D RT models, in that
these models will tend to underestimate the net solar loading to the ground and
thus may inuence global energy balance estimates.

The �nal group of cases are the high resolution 163 and 323 cell models. Here,
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Figure 35. Critically-resolved cases for the 43 cell model.

Figure 36. Resolved cases for the 43 cell model.

there is only one critically-resolved scenario (P = 7=9 for the 163 model),

with the remainder over-resolved. As anticipated, these results all show a high

correlation to the Monte Carlo results. Here, we also note that it would be

di�cult to actually produce results that are much closer to the Monte Carlo

model outputs regardless of the number of cells we used unless we were to

rerun the Monte Carlo cases. Since we only used 2 percent accuracy in the

Monte Carlo runs, it is unlikely we could improve much on the approximately
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Figure 37. Under-resolved cases for the 43 cell model.

Figure 38. Critically-resolved cases for the 83 cell model.

1 percent accuracy of the RMSE. Note further that in all the 163 and 323 results,

the correlation to the Monte Carlo results was 0.999 or greater, which validates

both the Monte Carlo approach followed as well as the BLITS model results.

The results for these comparisons are found in �gures 41 through 43.
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Figure 39. Resolved cases for the 83 cell model.

Figure 40. Under-resolved case (P = 7=9) for the 83 cell model.
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Figure 41. Critically-resolved case (P = 7=9) for the 163 cell model.

Figure 42. Resolved cases for the 163 cell model.
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Figure 43. All cases for the 323 cell model.
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4. Using AIM Output

The primary purpose of the RT codes discussed in this report is to facilitate

the radiometrically correct rendering of the appearance of natural cloud scenes.

This task encompasses several related subtasks. For example, one may be

interested in the appearance of a simulated surface below a broken cloud �eld.

One may wish to render objects (trees, buildings, bridges, vehicles) that are

either attached to or moving on or near the terrain. One may wish to determine

the atmosphere's appearance (fog, haze, or precipitation) under clouds. Or, one

may wish to characterize the appearance of the cloud �eld itself.

Each of these subtasks entails a sequence of di�erent processing steps. However,

this chapter focuses on the rendering of components of the atmosphere. For

this set of tasks, one must perform integrations over speci�ed lines of sight.

Each LOS will have an initial radiance value plus path integrated properties.

These path properties entail transmittance and path radiance characteristics.

The path radiance requires interpolations over direction and position of RT code

results obtained in a set of speci�c directions at regularized positions. Positional

interpolation can be accomplished any number of ways, though the process is

generally based on distance to nearest neighbor points. Directional interpolation

depends on the Gaussian quadrature method chosen to simulate the scattering.

This chapter ends with a description of a cloud rendering methodology and

several output �le formats useful for input to visualization routines.

4.1 Line of Sight Calculations

For any medium we have a standard technique for representing the e�ects of

the volume for a given LOS through the volume. This technique is related to

the equation of radiative transfer (22), and its solution, Eq. (24). Since any

image to be rendered can be considered composed of a series of pixels, and each

pixel can be thought of as representing a particular LOS through the medium,

determining the atmospheric e�ects for a particular image becomes a matter

of tracing a large number of lines of sight through the simulated atmosphere.

Each LOS is characterized by an origin, a direction, and a distance, and e�ects

are determined by tracing through a sequence of adjacent cells in the scattering

volume.
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4.2 Integration Procedure

For the moment, let us assume that we know the original value for the scene
radiance at the far end of each LOS associated with each image pixel. All
that remains then is to evaluate the transmittance and integrated path radiance
associated with the intervening atmosphere. Call the initial radiance associated
with a pixel I0. Let S represent the path length of the intervening atmosphere.
Let ~TS be the transmittance, and LS be the integrated path radiance of that
atmosphere. Then, if IS is the radiance presented at the terminus of that
atmospheric path as the energy enters the imaging optics, we have,

IS = I0 ~TS +LS : (93)

The entire e�ect of the atmospheric path can thus be represented by ~TS and LS .

While some simplisticmodels compute ~TS and LS from single values of extinction
coe�cient and limiting path radiance (as in the Introduction), these are actually
integrated quantities. Normally, atmospheric path e�ects are evaluated by
dividing the LOS into a series of small increments from the observed object
to the observer. But these equations can also be evaluated outward from the
observer, and we shall show why this method has certain advantages during the
rendering process.

First, we consider the traditional method running the LOS from the object to
the observer. Let n be an index that runs from 1 to N , and let sn be the
length of a given path increment along a line from the object to the observer.
We then de�ne ~tn as the transmittance over the path increment sn and ln as
the limiting path radiance over that increment. Since we have now converted a
continuous calculation into a series of increments, let us de�ne ~TN = ~TS as the
total transmittance over the entire LOS, and,

~Tn = ~Tn�1 ~tn; ~T0 = 1: (94)

Similarly, let us de�ne Sn as

Sn = Sn�1 + sn; S0 = 0: (95)

This implies SN = S. Lastly, we have a recursive de�nition for Ln,

Ln = Ln�1 ~tn + ln (1� ~tn); L0 = 0; LN = LS: (96)

Here, T0, S0, and L0 are initial values. However, it is often more valuable to
determine the path characteristics from the observer's perspective by integrating
the path e�ects beginning at the observation point and proceeding out along the
LOS. For this consideration, let us de�ne a new index variable m = 1 +N � n.
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We can then de�ne a new set of transmittance and path radiance variables,

s0m = s1+N�m, ~t
0
m = ~t1+N�m, and l0m = l1+N�m. Then,

S0m = S0m�1 + s0m; S00 = 0: (97)

~T 0m = ~T 0m�1 ~t
0

m; ~T 00 = 1: (98)

L0m = L0m�1 + ~T 0m�1 l
0
m (1 � ~t0m); L00 = 0: (99)

This second path description has the advantage that objects at di�erent

ranges along the same LOS can be interpolated using results at di�erent m

indices. These results thus would work well for moving objects as they change

ranges and possibly position within the �eld of view, assuming a stationary

observer. A further advantage of this approach is that if there is some threshold

transmittance below which we are essentially viewing only atmosphere, then the

path integration can be truncated, saving computer resources. In contrast, the

disadvantage of the former approach is that even if the observer is moving, there

will only be at most a single LOS that obtains the advantage that results can

be reused for the observer at di�erent ranges from the object. All other lines

of sight must be continually recomputed. It therefore appears that the second

approach is more versatile.

To evaluate the quantities ~t0m is relatively routine. Over each path segment, there

will be a given extinction coe�cient, k0m, associated with the cell in the modeled

domain being traversed. The transmittance over that path segment will then be
~t0m = exp(�k0m s0m). The distances traversed in each cell can be determined

through a ray tracing algorithm. For cubical cell shapes, the computation

of s0m is relatively straightforward. However, due to the computer-intensive

computation of ~t0m, it may be more e�cient to use less exact means whereby

the path is sampled in evenly spaced increments. This latter method allows for

more rapid simulation of the path geometry but could lead to di�culties when

the observer is in motion with respect to the cloud features.

The computation of the l0m terms is somewhat more complicated. We treat this

in two phases. First, volumetric limiting path radiances must be derived from

the surface based radiance results of the RT code. This �rst stage produces

results at the speci�c discrete ordinate directions for which the code was run.

These results must then be interpolated by direction to produce a limiting path

radiance for the speci�c direction leading into the observer's sensor. These topics

are treated in the next two sections.
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4.3 Evaluating Limiting Path Radiance

The extraction of limiting path radiance from the RT code results requires
some reorientation in viewpoint, since the RT code output is surface averaged
radiances, while the integrated path radiance calculation requires volume-based
information.

In order to evaluate this information, we consider the energy of a single stream
(index i) as it enters the volume. For this computation we return to the notation
used in section 2.1, where �ik represents the components of stream i with respect
to the x, y, and z axes, indexed by variable k = 1; 2; 3, respectively. Similarly,
let Iik be the average radiance predicted for stream i entering through the x, y,
and z input walls of the volume, again indexed by variable k. And let �Tik be
the mean transmittances through the cell for energy entering through the kth
input face for stream i (same as the �T statistics described in Eqs. (43) through
(45), except that the `standard' orientation results have been transformed to
correspond to the correct walls for the stream in question).

For di�use stream i we may determine the total ux entering the cell as:

Ein;i =
�

2
wi

3X
k=1

�ik Iik�
2; (100)

where � is again a cubical cell edge length, and where we weigh the energy
according to the solid angle associated with the stream (�2wi) and the mean
cosine of incidence across the cell wall (�ik). The total energy transmitted
across this cell for stream i will similarly be

Etran;i =
�

2
wi

3X
k=1

�ik Iik �Tik�
2: (101)

If we then assumed a conservative scattering condition, we would expect that
the scattered energy emitted from the volume element would account for the
remaining energy. Call this amount Ecs;i for the conservative scattered energy.
The actual energy scattered under a single scattering assumption would be
$Ecs;i, where $ is again the single scattering albedo. Let

Ecs;i =
�

2
wi �Ii

MX
j=1

�

2
wj ~P (�ji)

3X
k=1

�jk (1� �Tjk)�
2 = C �Ii; (102)

where the result is a linear function of �Ii, the j summation is over all output
directions from the cube, �Ii is the appropriate volume averaged radiance for
stream i that produces the correct amount of emitted energy in the conservative
scattering limit. The k summation is over the output faces, and thus �jk is the
appropriate cosine of the jth stream with the kth output face; similarly, �Tjk is

80



the mean transmittance of energy exiting the kth face via the jth stream, and
�ji is the cosine of the angle between incident (
̂i) and exiting (
̂j) directions.

Using Eqs. (100) through (102), we may write

�Ii =
(Ein;i �Etran;i)

C
=

P
k

�ik (1� �Tik) Iik

MP
j=1

�
2
wj ~P (�ji)

3P
k=1

�jk (1 � �Tjk)

: (103)

Using this value for the volume averaged radiance for stream i, the total limiting
path radiance for all streams in the standard discrete ordinates directions 
̂l may
then be determined as,

�ll = $

MX
i=1

�

2
wi ~P (�li) �Ii: (104)

However, this value accounts for only the di�use scattering component of the
limiting path radiance. To this value we must add the black body component
and the direct component. The black body component is simply the B term
previously described. For the direct component, we must follow a similar
procedure to that described for the di�use component, but the derivation must
consider the delta scattering property of the direct radiance. The integration
over output faces for the conservative scattering calculation involves terms
~P (
̂0; 
̂j), where 
̂0 is again the unit vector indicating the direction of
propagation of the direct energy component. Second, instead of describing e�ects
by scattering cell class, each cell must be individually assessed to determine the
incident ux on each input face and the fractional transmitted energy for energy
that entered through each face. Lastly, since the direct energy is either converted
completely into di�use stream energy, transmitted through the cell, or absorbed,
there is no additional e�ect of direct radiation for path radiance purposes.

We thus have a complete procedure for evaluating the limiting path radiance for
any cell in any direction, and thus we can determine the apparent brightness of
any path through the scattering volume.

4.4 Directional Interpolation

The remaining step in evaluation of the limiting path radiance is a directional
interpolation. The reasoning behind this step is that instead of computing l0m
directly based on Eq. (104), this equation requires an interpolation over all
incident directions each time it is invoked. An alternative method of evaluating
l0m would be to translate the results produced at the discrete ordinates directions
into some other, higher order representation. In this representation, more
e�cient methods, using a smaller set of nearest neighbor points, could be used.
One such possibility is to generate a series of points at equally spaced meridians.
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A splined �t can then be performed along each meridian, and results at di�erent
meridians can then be further splined. Other methods are possible as well; for
example, one may desire to transform from the set of discrete ordinate directions
to a separate set of new directions which also span the unit sphere. To make
this transformation, a spherical harmonics method is invoked.

Let us de�ne a set of orthonormal functions on the unit sphere which shall be
referred to as even and odd spherical harmonic functions:

Ze
`m(�; �) =

s
2`+ 1

4�
(2 � �m0)

(`�m)!

(`+m)!
Pm
` (�) cos(m�); (105)

Zo
`m(�; �) =

s
2`+ 1

4�
2
(`�m)!

(`+m)!
Pm
` (�) sin(m�); (106)

where � is the cosine of the zenith angle, � is an azimuthal angle, ` � m � 0,
and where Pm

` (�) is the associated Legendre polynomial, which can be given in
terms of Rodrigues' formula as (Jackson 1975),

Pm
` (�) =

(�1)m
2` `!

(1� �2)m=2 d`+m

d�`+m
(�2 � 1)`: (107)

These functions have the properties of orthogonality when integrated over 4�
steradians: Z

4�

d
Ze
`0m0 (�; �)Ze

`m(�; �) = �`0` �m0m; (108)

Z
4�

d
Zo
`0m0(�; �)Zo

`m(�; �) = �`0` �m0m (1 � �m0); (109)

Z
4�

d
Zo
`0m0 (�; �)Ze

`m(�; �) = 0; (110)

where �ij is a kronecker delta function of indices i and j.

These functions are similar to those used by Zardecki (1995), but contain
di�erent normalization factors, which tend to somewhat simplify the
mathematics. Note that these spherical harmonics functions are always real
valued. This is signi�cant because we want to exclude imaginary results, since
we are dealing with strictly real valued radiances.

Because of these properties, a function of direction may be expanded as:

I(�; �) =
1X
`=0

X̀
m=0

Ae
`m Ze

`m(�; �) +Ao
`m Zo

`m(�; �); (111)

82



where the A`m coe�cients are determined using,

Ae
`m =

Z
4�

d
Ze
`m(�; �) I(�; �); (112)

Ao
`m =

Z
4�

d
Zo
`m(�; �) I(�; �): (113)

However, due to the characteristics of the discrete ordinates approach, these
coe�cients can be determined using the summation results:

Ae
`m =

�

2

MX
i=1

wi Z
e
`m(�i; �i) Ii; (114)

Ao
`m =

�

2

MX
i=1

wi Z
o
`m(�i; �i) Ii; (115)

where we recall from section 2.2 that M (equals N(N + 2)) is the number of
streams in a discrete ordinates model.

If one, therefore, desired to determine the radiance results (Ij) in a series

of directions 
̂j , the transform mechanism for converting from the sampled
directions Ii to the output directions Ij could be expressed as a matrix
multiplication:

Ij =
MX
i=1

Xji Ii; (116)

where

Xji =
4�wi
8

LX
`=0

X̀
m=0

�
Ze
`mi Z

e
`mj +Zo

`mi Z
o
`mj

�
(117)

is obtained by rearranging the order of the summations in Eqs. (111), (114), and
(115), and Ze

`mi = Ze
`m(�i; �i), Z

o
`mi = Zo

`m(�i; �i). The only restriction placed
on this method is that the value of the summation limit L used in Eq. (117)
must be chosen such that all equations of form (108) through (110) integrate
properly under the stream expansion chosen. That is, we require,

4�

8

MX
i=1

wiZ
e
`0m0 (�i; �i)Z

e
`m(�i; �i) � �`0` �m0m; (118)

4�

8

MX
i=1

wi Z
o
`0m0(�i; �i)Z

o
`m(�i; �i) � �`0` �m0m (1 � �m0); (119)
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4�

8

MX
i=1

wi Z
o
`0m0(�i; �i)Z

e
`m(�i; �i) � 0: (120)

This requirement leads to the interesting conclusion that, while we have assumed

that ifM = N (N +2), our phase function expansion was valid to L = N , direct
calculations show that the interpolation criteria above are only valid through

L = N=2.

Using the above technique, the radiance data produced by the radiative transfer
code may be interpreted for any desired direction.

In summary, we may conclude that transmittances and limiting path radiances
for individual path segments can be computed along any path within the

modeled scattering volume, leading to a constructive method for evaluating
path transmittances and integrated path radiances for arbitrary geometries. The

remaining aspects of propagating information for image rendering purposes are

relating the image geometry to a given path within the scattering volume and
relating the radiances produced by the scattering model to pixel data placed in

the image �le. These aspects are discussed in the next two sections.

4.5 Viewing Geometries

In perspective viewing, the origin point for each pixel is some image plane within

the observer's optical system. The simplest such system, and the one adopted

here for our case study, is a pinhole camera where the image plane is placed
perpendicular to the primary viewing axis, and each LOS is viewed as passing

out of the camera through the center of the lens into the modeled volume.
In orthographic rendering, the origin of each LOS can be a point in a plane

from which parallel lines of sight are drawn through the volume of interest. In

perspective viewing, the lines of sight naturally diverge after passing through
the `lens' to span a particular solid angle view of the volume of interest.

Regardless of this distinction, each LOS will trace its way through a unique
sample of the modeled scattering volume until it either exits the volume through

the top of the modeled region (the `roof'), impacts the modeled surface (the
`oor'), or reaches some preselected maximum range after which the computation

is truncated. This latter step is usually necessary to control computation time

in an application.

Any LOS that crosses upward through the roof is assumed to see only

background atmosphere with a brightness characterized by a directionally
dependent background sky color. An LOS which strikes the surface, on the other

hand, can be represented using any of a series of possible models to include a
constant reectivity surface, user-designed surface objects, reectivity mappings,

etc.
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4.6 Radiance to Pixel Value Conversions

Once means of representing the upper and lower bounding surfaces have been
chosen, it will be necessary to convert path radiance values given in physical
units into image related pixel values. This process involves the use of conversion
factors.

To understand where AIM derives its radiance information, we begin with
another AIM model input. To initialize the radiance information AIM runs an
Electro-Optical Systems Atmospheric E�ects Library (Shirkey et al. 1987)
(EOSAEL) con�gured version of the Air Force's MODTRAN model (Berk et al.
1989) to determine the direct (solar) irradiance and directionally dependent
di�use radiances of the sky background at the top of the modeled volume in
each of the downward welling stream directions. Using these values along with
the interpolation technique described in section 4.4, one can determine the sky
radiance in any direction. Call this amount RU (
̂). Due to the nature of
MODTRAN, RU will only be a function of direction, not position. Once an LOS
crosses upward out of the volume, using the integration convention described
in section 4.2, we would simply add in a �nal step to the path integration
procedure (call it N + 1), where s0N+1 = 1, ~t0N+1 = 0, and l0N+1 = RU . Thus
there is no transmission beyond this �nal step, and RU becomes the background
radiance. Depending on how high above the surface one wanted to simulate
embedded (ying) objects, other options are also available but might involve
running larger simulation volumes.

For downward directed LOS, we need to consider lines that pass through the
ground plane. To accomplish this task, we need to know the properties of the
surface to be modeled as well as the simulated ambient illumination at each
surface point. To evaluate this ambient illumination, consider that at each
surface point there will be a set of downward directed streams which can be
integrated over solid angle and cosine weighted to produce a net di�use ux.
The direct irradiance can be computed as well, resulting in a net irradiance at
the base of the modeled volume beneath the last layer of modeled cells. Currently
we assume the surface is a Lambertian reector. Thus the reected radiance can
be evaluated by dividing the net incident ux by � and multiplying by a surface
reectivity �.

The BLITS model can accept positionally varying surface reectivity, but this is
not the general usage of the model. Instead, an average surface reectivity is
usually applied to the entire surface. Using this approach, the radiance �elds
produced can be translated across the terrain, reecting the �rst order e�ects
of wind motion of the cloud �eld. Most terrain variations will average out over
the 250 m cell lengths involved in the RT calculations.

Taking this approach, assume for a given region of the surface that there is a
known mean reectivity ��. Assume also that there is an image of the surface
available. De�ne �m as the reectivity of the zero pixel value and �M as the
reectivity of the maximum possible pixel value. Also assume the image has not
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been distorted in some way, such as by a gamma correction. Thus the image
brightness is considered to vary linearly according to pixel value, and that this
linearity is related to pixel reectivity.

We have thus discussed means of representing the upper and lower boundaries
of the rendered scene using previously available image data and radiance
information from MODTRAN. The following section completes the information on
rendering techniques.

4.7 Cloud Rendering Algorithm

In previous sections we described the means of tracing paths through the
scattering volume. However, as is often the case, this technique is not without
di�culties. These di�culties arise due to the level of complexity of the problem
addressed. For a tactically signi�cant scenario, we would like to treat a volume
on the order of several kilometers in each horizontal direction. In addition,
we need to extend the modeled scattering volume from the surface, where the
majority of tactically signi�cant (from an Army point of view) lines of sight
exist, up through a level that encompasses the majority of signi�cant cloud
features. This extension vertically is necessary because cloud shadowing can
have signi�cant e�ects on the illumination of the target and also the LOS,
signi�cantly a�ecting path radiance.

The di�culty with extending the scenario to encompass a tactically signi�cant
volume is that once it has been su�ciently extended, the small feature data in the
clouds themselves often cannot be adequately characterized during the radiative
transfer calculation. In our typical scenario a volume with 8 km horizontal by
4 km vertical dimensions is modeled using � =1/4 km per cell. But, this cell
size is often the size of actual clouds. Thus, a cloud may be modeled by only a
single cell. This can lead to signi�cant problems when attempting to visualize
such a cloud. Without additional information the cloud will appear as a cube.

To avoid this problem, an observation made by Hoock and Giever (1989) was
utilized. This observation was that limiting path radiance varies more slowly
than path radiance, since path radiance depends on the speci�c density structure
of the medium, but limiting path radiance reects the presence of available
illumination. In most clouds, the illumination is due to scattered energy, which
becomes rather uniform due to the highly scattering nature of most cloud
aerosols. This suggests that the radiance calculations in the radiative transfer
model can be run at a coarser resolution than is needed by the density map of
the medium.

To generate the 3D extinction mapping of the scattering medium, the AIM

preprocessing stage runs the Air Force's Cloud Scene Simulation Model (CSSM).
At its heart this model contains a fractal density generator and fractal statistics
for various cloud types. From the AIM input interface, a user can select
characteristics of the cloud �eld to be generated, including the base heights,
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layer thicknesses, cloud types, and cloud fractions of up to three layers of non-
cumulus clouds and one cumulus cloud layer. AIM then runs CSSM at four times
the resolution of that required by the BLITS RT code. The full resolution data
generated by CSSM are then transformed to extinction information which can be
used in visualizations. The data are then also coarsened using a spatial averaging
function for use by BLITS.

A rendering code was then developed to access the output from the RT
code and the 3D extinction mapping. The various techniques for generating
pixel modi�cations, angular interpolation, and point-to-point integrations
were employed. The model developed was tailored to generate orthographic
renderings of the scattering volume. The model entails two separate calculation
stages. In the �rst, a series of lines of sight are traced through the volume. In
the second, these results are used as interpolation points for generating values
at every pixel position.

In the �rst phase, the 1/16 km resolution CSSM output is used in combination
with the 1/4 km resolution BLITS model output. For a given observer location
on the outside of the modeled volume, there will be at most three outside walls of
the volume that are visible. Normally, these walls cover a simulated 8 km�8 km
footprint on the ground and are 4 km high. They are sampled at the same
1/16 km resolution as output from the CSSM code. Thus, on a vertical side wall
8 km wide and 4 km high, there are 128�64 sample lines of sight traced through
the volume. On a top or bottom wall there will be 128�128 sample points. Each
LOS is traced to determine net transmission and path radiance for each of three
color channels.

Following these LOS calculations, the program uses this data set to evaluate the
results for each pixel. A given pixel will be characterized by a path through the
volume. A Gaussian weighting scheme is used to interpolate the results for pixels
falling between LOS calculations made in the previous phase. This technique
provides a smooth transition between e�ects calculated for the sample points,
as characterized by the width of the Gaussian blending functions. Care must
be taken in selecting an appropriate width parameter, since a width parameter
that is too small will produce grainy results where only the closest sample LOS
calculation can inuence the result. A width parameter which is too large will
cause clouds to appear too smooth and can greatly slow down the interpolation
algorithm.

For a rendering algorithm, one must also describe the appearance of the surface
or sky backgrounds. We have created a separate �le that lists the incident
direct and di�use radiances present at each point beneath the scattering volume
for each sensor color channel. Let us call the combined channel irradiance
Vi;j;k, where i and j represent the horizontal position across the terrain, and
k represents the color channel index. As an example, a color sensor receiving
data on red, green, and blue channels has k values of 1, 2, and 3. Let us also
de�ne surface color channel reectivities (�i;j;k), resulting in reected energy,
�i;j;kVi;j;k at each (i, j) point along the surface and for each color channel k.
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For upward directed paths, there are corresponding values to be applied for sky
radiance color channel based on the description given in section 4.6. The last
step is then to apply the transmittance and path radiance e�ects interpolated
from the initial data set to the background pixel values just determined.

The results of these processing stages are a full set of real number results at each
pixel position for the color channel radiance results. The �nal step necessary is
to rescale these results such that they are remapped into a range that does not
exceed the maximum pixel value possible in any color channel. To accomplish
this step requires two passes through the pixel-based data set. The �rst step
involves determining the maximum pixel value at any channel and then using
this as a normalizing factor in the second stage.

Sample outputs from this algorithm are seen in �gures 44 through 46. The
scenario modeled uses a green, 20-percent reective, terrain surface for the base
of the volume. The cloud �eld is that for a 35 percent cumulus cloud cover. The
cloud �eld has been computed such that it is horizontally periodic. Thus clouds
that begin on one side or corner of the volume wrap around to the opposite
edge. This technique was deemed preferable to either (a) modeling very large
volumes or (b) modeling clouds which simply cut o� at the boundaries of the
volume.

Orthographic views of the scattering volume are shown in �gures 44 through 46
as seen from the top, side, and below. An afternoon time is modeled, resulting
in illumination on the western side of the clouds. Dark regions appear on some
clouds because the horizontal periodicity results in some clouds on the eastern
edge shading clouds near the western edge. In particular, note the shadowed
cloud tops in the center of �gure 44. Figure 45 reveals that the cloud tops of the
clouds on the eastern edge (in the background in �gure 45) are actually taller
than the clouds in the center. They thus shadow the clouds in the center due
to the horizontal periodicity. Cloud shadows also result in surface brightness
variations, which show up better on the computer screen than on hard copy.

4.8 FastVIEW Data Formats

The AIM codes utilize a data formatting and compression technique developed,
but not formally documented, in 1994 for the Defense Modeling and Simulation
O�ce's (DMSO) Environmental E�ects for Distributed Interactive Simulations
(E2DIS). In that e�ort, an attempt was made to generate common, useable, yet
compact data sets. The name established for these data sets was FastVIEW,
reecting the relationship between their source, the Weather and Visualization
E�ects for Simulations' (WAVES) model VIEW and an attempt to utilize data
output by that model in a rapid manner. We now provide the documentation
formally for that format in this section in hopes that others can design uses that
provide faster rendering of images using these sets. Originally, these formats
consisted of only two data set types. We have expanded these to three here

88



 

 89 

Figure 44. Visualization of a 35 percent cloud cover cumulus layer.  View is from 
directly above using an orthographic rendering technique. North is at the top of the 
figure. 

Figure 45. Visualization of a 35 percent cloud cover cumulus layer.  View is from the 
western side of the volume looking east using an orthographic rendering technique. 
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Figure 46. Visualization of a 35 percent cloud cover cumulus layer. View is from 
directly below using an orthographic rendering technique. North is at the top of the 
figure. 

to reflect the need for a higher density extinction map useable by a rendering engine.   

These data types now consist of the file types: EX.OUT, IL.OUT, and FV.CPD.  
The first provides information on the density map of the volume. The second is a 
surface illumination map. The third provides volumetric, directional, and spectral 
radiance information. 

4.8.1 EX.OUT4.8.1 EX.OUT4.8.1 EX.OUT4.8.1 EX.OUT    
The extinction file, EX.OUT, provides a 3D spectral mapping of the scattering 
volume's extinction coefficient mapping.  As explained in the previous section, the 
RT code is run on a coarse grid to conserve memory and time. This information is 
then coupled to a higher resolution map of the extinction. The EX.OUT file 
provides that map. 

The EX.OUT file itself consists of two sections, a header containing information 
about the volume and spectral resolutions, and the data itself. A typical header 



is seen below:

EXTC 1.0000

XDIS 0.0625

NNXX 128.0000

YDIS 0.0625

NNYY 128.0000

ZDIS 0.0625

NNZZ 64.0000

NNCC 1.0000

These lines represent the following information: The �rst line merely identi�es

the �le type as an EX.OUT �le; the second, fourth, and sixth lines indicate the cell

resolutions in kilometers; the third, �fth, and seventh lines indicate the number

of cells in the three directions; and the last line indicates the number of spectral

channels. The data body which follows the header section is listed according

to spectral channel, x, y, and z in order from most to least rapidly varying cell

index. In our convention, x is always increasing toward the east, y increases

toward north, and z is a vertical variable measured as height above the surface.

4.8.2 IL.OUT

The surface illumination �le type, IL.OUT, is similar to the extinction �le except

that there are only two dimensions in the data and there is more than one data

element per line in the body of the output. Here is a listing of a typical header:

ILUM 1.0000

XDIS 0.2500

NNXX 32.0000

YDIS 0.2500

NNYY 32.0000

NNCC 3.0000

DZEN 49.7397

DAZI 173.8699

The data listed for this �le are the direct and di�use uxes for each surface

region. The data are organized in the same format as the EX.OUT results:

spectral channel, x, and y in order of nesting from deepest to outer (y). Note that

these results are produced in some cases by weighing the computed radiances at

the surface according to their incident cosine, solid angle for di�use quantities,

and spectral weighting function.

As an example of a spectral weighting function, consider the human eye.

Middleton (1952) discusses the characteristics of the eye's photopic and color

spectral response curves. Let these be characterized by functions Sc(k), where k

is the wavenumber and c is the color channel index. These curves are normalized
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such that
R1
0

Sc(k) dk = 1. Hence, an input signal of E(x; y; k) in either di�use
or direct ux produces

Ic =

1Z
0

Sc(k)E(x; y; k) dk: (121)

To tailor these responses for use with image rendering products, we typically
convert the Ic values to NTSC RGB metrics using the transform R = NI,
where N is the matrix,

N =

0@ 1:910 �0:533 �0:288
�0:985 2:000 �0:028
0:058 �0:118 0:896

1A : (122)

Users should note that in this form the e�ects of sensor weighting have already
been accounted for once. In using these results for color scene rendering, one
needs to use terrain reectance coe�cients that do not themselves also contain
sensor weighting factors or the sensor e�ects would be applied twice.

4.8.3 FV.CPD

The �nal output form is the FastVIEW compressed �le type. This �le consists
of three main sections: a header, a series of directional templates, and the main
data listing. Of these, the �rst section is virtually identical to the EX.OUT style
header. An example is given below:

FSVU 1.0000

XDIS 0.2500

NNXX 32.0000

YDIS 0.2500

NNYY 32.0000

ZDIS 0.2500

NNZZ 16.0000

STDR 0.0625

NNCC 3.0000

NDCL 128.0000

Note that the di�erences include the �le type identi�er (FSVU in this case), the
STDR identi�er, and the NDCL identi�er. The STDR identi�er de�nes the standard
range used in the computations of the transmission factors contained in the
general output section. The NDCL identi�er de�nes the number of directional
templates included in the template section.

Each template currently consists of 43 items of data: the template index number
followed by 42 directional values. These values range from zero to 32767 (215�1)
and describe the directionally varying nature of the limiting path radiance. To
use these results an accessing algorithm has been written in C++. In this
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algorithm, the set of templates is described by a matrix Dij , where i is the
template index and j is the direction. In the main positional data listing, for
each location and sensor spectral channel, a single number is used to indicate
the template to use to describe limiting path radiance directional variability,
i(x; y; z; c). Also, a single number is used to de�ne the maximum limiting
path radiance in any direction at that point, Lm(x; y; z; c). To determine the
actual limiting path radiance in one of the canonical directions j, one evaluates
Lm(x; y; z; c)D[i(x; y; z; c); j]=32767. Intermediate directions can be evaluated
by any of a number of interpolation techniques. The C++ routine mentioned
has the full description of each of the 42 directions and means of interpolation.

Following the template listing is the main section of the data. This listing
consists of data in a di�erent order from the EX.OUT listing: x, y, z, color channel,
in order from outer to inner loops. Each data line contains four elements: the
spectral extinction coe�cient, a transmittance factor, a maximum limiting path
radiance, and a directional template index number. The transmittance factor is
generated based on the path length value (in km) given in the header, which can
be used to step through the cloud �eld. In the current implementation, STDR is
always set at 0.0625 km.

93



94



5. Discussion and Conclusions

In the previous sections we have shown a method for producing radiometrically
correct three-dimensionally inhomogenous cloud scenes using a cell-surface-
based DOMRT code. This code has the advantage that energy conservation is
imposed automatically. Also, interpretation of di�use radiance and scattering in
any direction is obtained using spherical harmonics expansions and the discrete
ordinates choices of stream directions. Di�use, direct, and blackbody-emitted
energies are all treated in a consistent manner. This method does not share
the disadvantages of Fourier methods regarding memory, nor does it share the
limitations of the original DOM in regard to treating only low-density media,
nor the di�usion approximation's limitation to dense and isotropically scattering
media. Finally, physically realistic cloud scene rendering is possible using results
determined by the RT routine.

The performance of these models using current computer resources is hopeful.
Using an R4400 chip SGI, the runtime for the radiative transfer routine
spanning seven wavebands across the visible spectrum is on the order of 1
hour. Postprocessing of the outputs to compress the information to color
channels and allow for rapid directional interpolation requires about 1 additional
hour. Rendering of images currently takes approximately 3 to 5 min per frame.
However, considering that no parallelization has been attempted on these codes
and much faster machines are becoming available, it is possible that true 3D
color simulations of radiometrically correct cloud �elds are possible in the near
future. The compression techniques employed are also useful in that they tend
to limit the amount of memory that must be dedicated to running such LOS
calculations.

This method has been integrated with an intuitive scenario generator within
AIM. This section of the code allows the characterizing of a particular
scenario using a minimum of parameters while automatically processing
all the needed information to allow the rendering of the scenario volume
by the rendering engine. Intermediate output �les needed to render
the volume from di�erent directions are archived to facilitate additional
simulation tasks. We have implemented a version of this software within the
DoD DMSO-sponsored Master Environmental Library program (http://www-
mel.nrlmry.navy.mil/), permitting the on-line access and delivery of such
�les. We have also established a web site providing color examples
of the images that can be created using this technique (http://www-
mel.arl.mil/MEL/rad/r0.html).
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AIM allows a user to produce any number of di�erent cloud scenarios for
visualization purposes and provides choices in terms of cloud representation
within the RT code. This code accesses databases of MODTRAN horizontally
homogeneous background aerosols pro�les. The EOSAEL con�gured version
of MODTRAN is itself run several times to initialize the volume upper boundary
with information regarding downwelling di�use stream radiance and direct
illumination as well as being used to compute vertical components of background
molecular absorption coe�cients. It also calls the Air Force CSSM code to
generate a cloud density �eld.

AIM uses a solar/lunar calculation routine to determine whether the Sun or the
Moon is the source of direct illumination. Whenever the Sun is above the horizon
it is used as the direct source. If the Sun is below the horizon and the Moon
is above the horizon, then the Moon is used as the direct source. Appropriate
changes to inputs parameters used in the calls to the MODTRAN routine are used
to reect the conditions to be simulated.

AIM also uses information gleaned from the PFNDAT series of aerosols contained
in EOSAEL. This series of aerosols covers the majority of surface-based
precipitation types (not treated under the current version of AIM), hazes, fogs,
and munition smokes. In addition to these aerosols, a sequence of upper-
level cloud aerosols were run through the AGAUS Mie scattering phase function
calculation routine to produce PFNDAT-clone outputs. The PFNDAT �les and
the clone results were then processed through a routine to analyze the optimal
Legendre polynomial representation for the 24-streammodel using the technique
described in the appendix.

The issue of cloud and haze visualization is a �eld of intense current interest.
Though many current and planned simulations attempt to treat cloud e�ects,
these seldom treat clouds in radiometrically correct fashion or consider fully
three-dimensional inuences. More often than not, the appearance of clouds
are handled as merely pictures that have been arti�cially embedded in a scene,
without regard to their feedback interactions with scene features such as via
cloud shadow e�ects or via limiting path radiance variations produced by shafts
of sunlight extending through gaps in the cloud layers.

The codes described here are far more robust. In the future, the processing speed
of these codes can be greatly enhanced using parallel processing techniques, novel
rendering techniques, and increased computer memory.
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Acronyms and Abbreviations

1D One-dimensional
3D Three-dimensional
AIM Atmospheric Illumination Module
ASL U.S. Army Atmospheric Sciences Laboratory
AFGL U.S. Air Force Geophysics Laboratory
ARL U.S. Army Research Laboratory
AGAUS August Miller's Mie Scattering Code
AGSNOW Special version of AGAUS for treating SNOW cases
BLIRB Boundary Layer Illumination and Radiance Balance model
BLITS Boundary Layer Illumination and Transmission Simulation
BRDF Bi-directional Reectance Distribution Function
CSSM Air Force's Cloud Scene Simulation Model
DISORT DIScrete Ordinates Radiative Transfer routine
DOM Discrete Ordinate Method
DOMRT Discrete Ordinate Method approach to Radiative Transfer
DMSO Defense Modeling and Simulation O�ce
DoD Department of Defense
E2DIS Environmental E�ects for Distributed Interactive Simulations
EOSAEL Electro-Optical Systems Atmospheric E�ects Library
EOSAEL92 1992 Release of EOSAEL
FE Finite Element Technique within DOM
HGPF Henyey-Greenstein Phase Function
IHMC In-House Monte Carlo
IID Independent Identically Distributed
LLS Log Least Squares
LOS Line of Sight
M&C McKee and Cox
MODTRAN Air Force Moderate Resolution RT Model
RMS Root Mean Square
RMSE Root Mean Square Error
RT Radiative Transfer
RVs Random Variables
SAA Small Angle Approximation
WAVES Weather and Atmospheric Visualization E�ects for Simulations
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Appendix A

The Scaling Transformation
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In this appendix, we describe the approach used to make a scaling transformation
on the form of the phase function used in the radiative transfer (RT) code.
This transform modi�es the coe�cients used to describe the extinction, single
scattering albedo, and Legendre polynomial expansion coe�cients of a phase
function, in the process removing the e�ects of the aerosol forward scattering
peak from the radiative transfer equation.

These modi�cations are necessary because phase functions often have forward
peak values on the order of hundreds or thousands. It is impossible to adequately
simulate these peaks with low order Legendre expansions. Thus, it is a common
practice to model the forward peak region with a � phase function. By
introducing this approximation, some of the energy is treated as unscattered.

The method developed here consists of a log-least-squares (LLS) approach to
evaluate the forward scatter fraction (f) and an empirical model for modifying
the Legendre expansion coe�cients, c`. The LLS approach models the phase
function's forward peak using a Gaussian phase function adding to the low
order Legendre expansion used to characterize the remainder of the angular
dependence.

In developing the empirical form for the c`, we consider several forms for the
least squares approach. It is shown that the �-M solution for the c`, as a function
of f and the Legendre expansion coe�cients of the phase function derives, from
a standard least squares analysis. We then show the similarity between actual
phase functions and the Henyey-Greenstein single-parameter phase function.
This similarity is used to argue that a further correction is needed to the c`
equation, leading to the empirical form. The results of using this technique
have previously been shown in �gures 17 through 20 in chapter 3, which reveal
that we are able to outperform the �-M technique in most cases.

A.1 Background

As described in the main contents of this report, the discrete-ordinates approach
to solving the radiative transfer equation is a valuable tool in studying
scattering in three-dimensional media. A main feature of this technique
involves representing phase function scattering in a way that is compatible
with the discrete ordinates methods. To accomplish this representation we
�rst produces estimates of the scattering phase functions of various natural
aerosols. Tofsted et al. (1997) generated a series of such functions for near
surface haze and precipitation aerosols based on the Mie scattering algorithm
developed by Miller (1983), that incorporated the improved forward peak
handling technique of Lentz (1976). Upper air cloud aerosols were also treated
using the Khrgian-Mazin particle size distribution parameterizations adopted by
Low and O'Brien (1987).
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These phase functions must then be represented as Legendre expansions, and
often for greater accuracy these expansions are modi�ed according to the
delta correction, also known as a scale transformation (Potter (1970), Joseph
et al. (1976), Wiscombe (1977), Schaller (1979), McKellar and Box (1981),
LeNoble (1985)). Techniques developed under these previous applications
normally only considered 1D RT codes where large order stream models could
be instituted. In these applications little consideration was given to ensuring
that the phase function remained nonnegative at all scattering angles (with the
exception of Fiveland (1984) when he limited the asymmetry parameter g to
the range 0 � g � 1=3 in his two-term expansion) because in most situations
the scattering model order was high enough that it would automatically be
nonnegative. Except for Fiveland, previous studies never even considered that
the order of the stream model would be too low. But since our abilities are
already being taxed due to CPU time, memory, spectral, spatial resolution, and
spatial domain concerns, it only makes sense that we should have to implement
our model under particularly stressful conditions. We therefore require a model
which is more robust at low order expansions than has been available heretofore.

To avoid the problems of negative radiance calculations, the traditional delta
correction approach has been revised. In the past, various empirical arguments
were made for determining the value of the parameter f . Joseph et al. (1976)
used f = g2. Liou (1992) proposed using a constant f for a given scattering
order. McKellar and Box (1981) recommended various functions of the
Legendre coe�cients. Most of these recommendations depend on the number
of coe�cients selected. Wiscombe (1977) set f to the next Legendre expansion
coe�cient beyond the range of coe�cients modi�ed in the expansion. But, in
each of these cases, f is de�ned based on an empirical rule. In what follows we
base f on a LLS analysis, but determine the c` expansion coe�cients based on
an empirical rule.

To help de�ne the degree of success possible with this method we have selected
one of the Shettle and Fenn (1979) advection fog aerosols as our sample case to
model. This aerosol has a modi�ed gamma particle size distribution with mode
radius of r0 =10 �m and � and  parameters of 1 and 6, respectively. The
scattering properties of this phase function at di�erent wavelengths are modeled
using a Mie scattering code.

A.2 Phase Function Representation

As in the main section, the phase function P (�) is represented as a function of
the cosine of the scattering angle (�) only. This presupposes that the aerosol
droplets are either spherical in shape or exhibit random orientation. P (�) is
normalized according to

2�Z
0

d�

�Z
0

P [cos(�)] sin(�)d� = 2�

1Z
�1

P (�) d� = 1: (A:1)
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This phase function can be exactly represented by an in�nite Legendre series,

P (�) =
1X
`=0

�`X` P`(�); X` = 2�

1Z
�1

P (�)P`(�) d�; �` =
2`+ 1

4�
; (A:2)

where P`(�) is the Legendre polynomial of order `. Unfortunately we do not have
an in�nite number of streams by which to characterize the scattering e�ects, so
we must �nd some suitable way to truncate this expansion.

Under the delta correction approach (Joseph et al. (1976), Wiscombe (1977)),
the phase function is normally approximated by a � function in the forward
direction and a Legendre expansion of order L,

PE(�) = f
�(�� 1)

2�
+ (1� f)

LX
`=0

�` c` P`(�): (A:3)

Here the � is divided by 2� after van de Hulst (1980b), which assumes the full
peak falls within the integral bounds.

Under the classic �-M approach (Wiscombe 1977), one assumes f = XL+1. Since
the Legendre expansion of �(�� 1)=(2�) has coe�cients X` = 1, for all `, if one
equates the �rst L + 2 terms of the Legendre expansion of P (�), in Eq. (A.2),
to those of PE(�), in Eq. (A.3), one obtains the equations,

�`X` = �` f � 1 + �` (1� f)c`; ` = 0; :::; L+ 1; (A:4)

whence,

c` =
X` � f

1� f
; ` = 0; :::; L+ 1: (A:5)

Of course, since X0 � 1 by de�nition, we will always have c0 � 1. And, as
noted, since under the �-M approach f = XL+1, cL+1 = 0. This expansion is
thus purported to apply to an order L+1 expansion, although one only retains
terms out to L.

Using the model of PE(�) above, we can determine its e�ect on the overall
equation of transfer. Let us rewrite the equation of transfer using the phase
function estimate, as


̂ � rI(~r; 
̂) + � I(~r; 
̂) = �$

Z
4�

I(~r; 
̂0)PE (
̂ � 
̂0) 
̂0 + � B(~r; �): (A:6)

Due to the � function in PE(�), the original scattering source term can be written
as,

J(
̂; ~r) = f �$ I(~r; 
̂) + (1� f)�$

Z
4�

I(~r; 
̂0)P 0(
̂ � 
̂0) 
̂0; (A:7)
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where P 0(�) is the modi�ed Legendre expansion:

P 0(�) =
LX
`=0

�` c` P`(�): (A:8)

The RT equation can then be rewritten as,


̂ � rI(~r; 
̂) + �0 I(~r; 
̂) = �0$0

Z
4�

I(~r; 
̂0)P 0(
̂ � 
̂0) 
̂0 + �0 B0; (A:9)

which has the same form as the original equation of transfer, except that we
have introduced the variables

�0 = � (1� f $); (A:10)

$0 =
(1 � f)$

(1 � f $)
; (A:11)

and
B0 = (1�$0)b; (A:12)

where we note that �0(1 � $0) = �(1 � $) such that the emittance term is
una�ected by this transformation.

This new equation simulates the forward scattered radiation not by directly
calculating the results, but rather by treating forward scattered energy as
unscattered. That is, the angular resolution achieved by using a smaller number
of streams is insu�cient to resolve the di�erence between forward scattered
and unscattered radiation. The resulting transfer equation must be treated as
an equivalent result, but it can never be related directly back to the original
problem, because we have removed any distinctions between forward scattered
and unscattered energy. Beyond this distinction, the new problem conserves
energy in the same degree as the original problem.

A.3 Least Squares Derivation

In this section, we consider alternate methods for evaluating f and c` based on
a least squares approach. We can then compare results obtained using this new
approach with the f = XL+1 approach proposed by Wiscombe (1977). Let us
begin by de�ning a least squares metric,

Z2 = 2�

1Z
�1

fP (�) � PE(�)g2 d�: (A:13)

Using this form of a least squares equation requires that all arguments of PE(�)
be square integrable. Obviously, the � component is not, so it will need to be
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replaced by a function which operates nearly like a delta function. That is, with
respect to the component Legendre polynomials, it will have to act with sifting
properties almost like a � function. As a simple mathematical device, in this
analysis, the � is approximated by a Gaussian form

�(�� 1)=2� � N(%)

2�%2
exp(��2=2%2); (A:14)

where

N�1(%) = %�2
�Z
0

exp(��2=2%2) sin(�)d�: (A:15)

N(%) is a normalization term accounting for the fact that, while we expect the
angular width of the distribution about the zero peak (%) to be narrow, we are
nonetheless integrating over a unit sphere (not over a planar surface) such that
N(%) must be slightly greater than unity to compensate. By this approximation
of a � phase function, we are saying that its width is small with respect to
the width of the Legendre components in the expansion. In order to ensure
this feature, we restrict % to values below some maximum, R, which we have
arbitrarily set at 0.15 radians.

Using this approximation for the � peak, Z2 can be written as a series of
six terms: Z2 =

P5
i=0Ci, which represent the squaring of the original phase

function, the � term, and the Legendre terms with themselves, and cross-terms
between these 3 basic types of terms. Of course, the Legendre terms of di�erent
indices are orthogonal and integrate to zero. After some manipulation, we obtain
the following results:

C0 = 2�

1Z
�1

P 2(�) d�; C1 = �2fN(%)QP (%); (A:16)

C2 = �2(1� f)
LX
`=0

�` c`X`; C3 = f2N2(%)Q�(%); (A:17)

C4 = 2(1� f) f N(%)
LX
`=0

�` c`Q`(%); C5 = (1 � f)2
LX
`=0

�` c
2
` ; (A:18)

where

Q`(%) =

�=%Z
0

exp(�u2=2)P`[cos(%u)] sin(%u)
%

du; (A:19)

QP (%) =

�=%Z
0

exp(�u2=2)P [cos(%u)] sin(%u)
%

du; (A:20)

111



Q�(%) =
1

2�%2

�=%Z
0

exp(�u2) sin(%u)
%

du: (A:21)

Of these, terms C0, C3, and C5 represent the squaring of the original
phase function, the Gaussian peak, and the Legendre terms with themselves,
respectively. C1 represents the correlation between the Gaussian peak and the
original phase function, C2 represents the correlation between the Legendre
terms and the original phase function, and C4 represents the correlation between
the Gaussian peak and the Legendre terms. Because % is small compared to �,
it will rarely be necessary to carry the Q integrations out over their complete
range.

Z2 is minimized by taking its derivative with respect to the individual variables.
Setting @Z2=@c` = 0, one obtains results from the derivatives of the sum of
components C2, C4 and C5. Dividing by the common factor 2 (1 � f)�` and
solving for c`, one obtains,

c` =
X` � f N(%)Q`(%)

1� f
: (A:22)

Notice that Q0(%) = N�1(%), so as expected the c0 term, which carries all the
energy continues to evaluate to unity.

In the limit as %! 0, N and the Q` both approach unity and the same equation
is obtained for c` as was obtained by the �-M method [Eq. (A.5)]. This con�rms
that a basic least squares approach is similar to the �-M method. But, this
method also provides information about f and %, while �-M only provided an
empirical formula for f .

We thus continue by substituting the expression for c` in the equation for Z2 to
yield,

Z2 = C0 � 2f N(%)QP (%) + f2N2(%)Q�(%)�
LX
`=0

�` fX` � f N(%)Q`(%)g2:

(A:23)
Taking @Z2=@f = 0 yields,

f N(%) =
Sn(%)

Sd(%)
=

QP (%)�
LP̀
=0

�`X`Q`(%)

Q�(%)�
LP̀
=0

�`Q2
` (%)

; (A:24)

where Sn and Sd are numerator and denominator quantities, respectively.
Introducing this new form once again to the Z2 equation, one obtains,

Z2 = C0 �K0 � S2
n(%)

Sd(%)
; K0 =

LX
`=0

�`X
2
` ; (A:25)
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where we note that both C0 and K0 are constants with respect to the phase
function parameter %. Z2 can thus be minimized by varying % alone.

Note that we require Sn(0) = P (1) �P�`X` > 0 for the method to predict
any forward peak at all. Otherwise, f is set to zero and c` = X`. For phase
functions which pass the �rst criterion, % can be determined, followed by f , and
�nally the c`'s.

To see the properties of a typical phase function when characterized by the
parameters f and %, we evaluated the test particle size distribution at di�erent
wavelengths and have plotted various functions of the results combined with the
mode radius property of the size distribution, the single scattering albedo $,
and the wavelength �, in �gure A.1.

As expected, we found that the ratio of % to �=r0 is roughly constant, indicating
that the forward peak represents a di�raction e�ect. And second, the fraction
f of energy in the forward peak is related to $, because $ is only reduced due
to energy absorbed within the particles. As more energy is absorbed inside, $
decreases. But, at the same time, f increases as the amount of di�racted energy
remains the same, but increases as a proportion of the total scattering.

Figure A.1. Comparison of forward scattering parameters % and f and
propagation parameters $, r0 and �.

This analysis gave us considerable con�dence in the least squares approach in
that (1) it was able to characterize properties of the forward peak region that
are consistent with theory of scattering, and (2) that it produced calculation
equations for the c` that correspond to previous theory. However, there is a
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de�ciency in this approach due to its failure to produce positive de�nite phase
functions for low order expansions. A sample case is shown in �gure A.2, in
which the predicted least squares curve for L = 2 resulting from an optimal
f = 0:54, produced a wide negative phase function estimate region from �=2 to
3�=4. The need for a nonnegative requirement was shown with respect to the
scattering results presented in the Monte Carlo chapter of the main text. We
must still look for some representative value of f which avoids negative values.

Figure A.2. Results of preliminary least squares approach produce negative
phase function estimates at scattering angles between �=2 and 3�=4.

We chose to work with the L = 2 (8-stream) case, since it can be solved in a
closed form. The Legendre expansion for this case is

P 0(�) = (4�)�1[1 + 3c1�+ 5c2(3�
2 � 1)=2]; (A:26)

which is a quadratic equation in the scattering cosine �. We can thus solve for
values of � which produce P 0(�) = 0, as

�0� = � c1
5c2

�
�
1

3
+

c21
25c22

� 2

15c2

�1=2

: (A:27)

The requirement to avoid phase function zeros is:

3c21 + (5c2 � 1)2 < 1: (A:28)
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If we then introduce the �-M form for the c`, we �nd that valid f values will lie
in a range �f about a mean value �f , de�ned as,

�f =
3X1 + 20X2 � 5

18
; (A:29)

�f =
[25 + 15X1(8X2 � 3X1 � 2)� 10X2(5X2 + 2)]1=2

18
: (A:30)

The sample fog phase function data were analyzed on the basis of Eqs. (A.29)
and (A.30) and plotted in �gure A.3. This �gure reveals a section around 10 �m
where only the mean value is plotted because �f has become imaginary over
this range. This indicates that there is no valid range of f about the mean for
which the phase function remains nonnegative.

Figure A.3. Evaluated range of f values (maximum, minimum, and mean) for
which phase function remains nonnegative.

We are thus led to the conclusion that the traditional equation for evaluating the
c`'s was insu�cient to maintain a positive de�nite status. Since this equation is
based on a standard least squares analysis, doubt is thus placed on this method.
An analysis of this method and the nature of standard phase functions reveals
where the problem arises: the least squares is attempting to match the value of
a function which exhibits a very high peak at � = 1 and very small values over
the rest of its range. But, since the least squares approach merely attempts to
minimize the distance of the estimate to the curve, the large values in the peak
region will receive maximum attention, and there is no penalty for `crossing the
line' into negative phase function values at large scattering angles.
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To solve this situation we can use a LLS optimization:

Z2 = 2�

1Z
�1

d�
�
ln0[P (�)]� ln0[PE(�)]

	2
; (A:31)

where

ln0(x) =

�
ln(x); x > Pmin

ln(Pmin) + 106(x � Pmin); x � Pmin
; (A:32)

where Pmin is chosen at some level below the minimum value of the tabulated
phase function data. For example, Pmin = min(P (�))=10. Since most phase
functions have minima in the range 10�2-10�3, a Pmin around 10�4 should be
su�cient to result in only the natural log function being accessed near the end
of the optimization process, but avoid evaluating negative arguments during the
intermediate stages.

To be compatible with the DOM we must still describe our phase function
estimate using Eq. A.3 since using a LLS approach leads to the complications.
But then, it becomes impossible to analyze the least squares equation to
produce analytical solutions for the di�erent coe�cients. Without these
analytical equations we end up with a multidimensional search over the c`
which could produce local minima making the search process very di�cult and
time consuming. Considering this complication, the Henyey-Greenstein phase
function (HGPF) model was considered as a model in guiding the development of
an empirical method of determining the c` values while simultaneously imposing
a positive de�nite conditioning through the use of the LLS equation.

A.4 The Henyey-Greenstein Phase Function

The Henyey-Greenstein model for the phase function is well known and has been
adopted by several authors (LeNoble (1985), van de Hulst (1980), Liou (1980))
who view it as a model of the typical behavior of aerosols, in spite of the fact that
the HGPF has no backscatter peak when the asymmetry parameter is positive.

The use of HGPF is widespread because it has a relatively simple analytical
form and because its expansion in terms of Legendre polynomials is particularly
simple. The HGPF is written under our normalization scheme as,

PHG(�) =
1

4�

(1� g2)

(1 + g2 � 2g�)3=2
; (A:33)

where g is the asymmetry parameter, often set to the value of X1, and varies
between -1 and 1. Legendre coe�cients of this distribution are

XHG;` = g`: (A:34)

Thus, at g � 1 the HGPF is a � phase function.
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Figure A.4. Estimates of the g parameter based on the Henyey-Greenstein
model. X` for ` = 1; 3; 5; 7 were used to estimate g for the sample fog aerosol
type.

Most aerosols exhibit X` values that can be approximated by some g value
between 0.85 and 1.00, as illustrated in �gure A.4. There, we used the X` to

compute g estimates using the equation g � X
1=`
` . The resulting estimates seen

in this �gure show some dispersion yet reveal that the HGPF is a realistic model.

This resemblance between the HGPF and aerosol phase function coe�cients
is useful in providing some insights into problems encountered when �nite
expansions of this form are needed. We identify this truncated form using the
function ~PHG(�),

PHG(�) � ~PHG(�) =
LX
`=0

�` g
` P`(�): (A:35)

The family of truncated HGPF functions behaves very di�erently from the full
HGPF. For example, �gure A.5 shows the behaviors of several approximations
to a delta function for di�erent even orders of expansion (L = 2; 4; 6; 8).
From the �gure we see a ringing behavior similar to the Gibbs phenomenon
observed in Fourier series expansions around functional discontinuities. These
are particularly severe when modeling a � function, and since most aerosols
exhibit highly forward scattering behaviors similar to �'s, we should expect
ringing there as well.

To remove these artifacts and yet maintain the HGPF form, we �nd that we
must reduce the g value down to some threshold maximum value that cannot be
exceeded without producing a negative phase function. Figure A.6 shows plots
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Figure A.5. Legendre expansion approximations to the � phase function at
di�erent orders of expansion, showing zero crossings for orders L = 2, 4, 6, and
8.

of a few of these truncated HGPF forms at maximum g values. We have plotted
these maximum g values out in �gure A.7. In this same �gure, we have also
plotted out the results of a second investigation where we asked the question:
What if we perform a �-M correction on a truncated HGPF representation? This
correction involves setting f = gL+1, leading to,

c` =
g` � gL+1

1� gL+1
:

This second curve indicates that when we impose a �-M forward peak truncation,
we increase the e�ective maximum g that can be treated within the model.
But, comparing these new maxima with characteristic g values of a real aerosol
(�gure A.4) reveals that we cannot adequately characterize these aerosols at L
values less than about 16 or 18 using the �-M.

Since using an L of 16 or 18 would impose heavy memory burdens on the RT
computations, some form for the c` computation was needed that provided a
system similar to that originally developed, yet avoided the negative phase
function problem. As an initial solution, it was observed that if one started
with an HGPF characterized by a value g, then this value must be corrected
downward to a value gL, corresponding to the value of g for order L which is
the maximum g parameter that produces a positive de�nite expansion at that
order. To obtain this reduction, one would need to multiply expansion coe�cient
` by a factor e`, where e < 1. But if we started with the expansion coe�cients
c` = (X` � f)=(1 � f), these coe�cients could be viewed as a series of values
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Figure A.6. Legendre expansion approximations to the maximum positive-
de�nite HGPF's at di�erent orders of expansion. Ampli�ed region shows curves
approach zero due to local minima closest to � = �1.

Figure A.7. Limiting maximum value allowable for g when imposing a positive
de�nite condition on an order L Legendre approximation of the Henyey-
Greenstein phase function, and when using the �-M correction method.

which decrease like a Henyey-Greenstein set, which leads to the proposition of
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a new empirical relationship for the c` of

c` =
[X` � f N(%)Q`(%)]

[1� f ]
e`: (A:36)

Here we have used the standard least squares results and augmented them by
the appended e` factor. Since X0 = 1 and N(%)Q`(%) = 1, we still have c0 � 1,

which conserves scattered energy.

To understand this solution somewhat better, consider the approximation that

the �-M is making: the goal under the �-M is to exactly match the Legendre
expansion coe�cients from the original series expansion in the new expansion,

X` = f �` + (1 � f) c`: (A:37)

Then, by using values for �` � 1, the standard equation is obtained for c`. In our

method we have Eq. (36) for the c`'s and wish to work backwards to compute
the coe�cients �`:

X` = f �` + e` [X` � f N(%)Q`(%)]; (A:38)

which leads to,

�` =
X`

f
(1� e`) +N(%)Q`(%) e

`: (A:39)

Obviously, Eq. (39) produces �` � 1 whenever e � 1 and % � 0. And these

two parameters approach these limiting values as the order L of the expansion
increases. Thus, the �-M technique can be seen to model the � function using

a truncated expansion of the exact � function coe�cients. Our method models
the � using optimized coe�cients based on the order of the expansion. The

di�erence is that the current solution uses coe�cients that minimize the ringing
behavior in the truncated series results.

We show the results of the LLS analysis in �gures A.8 and A.9. In �gure A.8,

the optimal value of e and the resulting Z2
log are plotted for an L = 2 case. Note

that e is a maximum when the sum of squares is a minimum, indicating that

there appears to be some sense in which the parameterization of e produces
maximum values near the solution point, leading us to conclude that (1) the

method is stable, and (2) the method attempts only to remove the negative
e�ects rather than abnormally reducing the inuence of higher Legendre terms.

In �gure A.9, the expansion resulting from this choice of e-f pair is plotted for
L = 2 and for a set of results for L = 4. In the L = 4 case, f = 0:58 and e = 0:93.

As seen, the L = 4 expansion captures the forward hemisphere behavior better
than the L = 2 expansion.
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Figure A.8. The minimum error value of e is plotted along with the scaled
squared error associated with that value as a function of the forward scatter
fraction f .

Figure A.9. Comparison of Legendre expansions for L = 2 and L = 4 using
positive de�nite choices for f and e against calculated phase function data.
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A.5 Conclusions

From �gure A.3 it was shown that a simple rule of thumb for modifying the c`
coe�cients, based on the forward scattering fraction f alone, can lead to negative
phase function evaluations at some angles. We thus introduced an empirical
equation for c` that employed the modi�cation by the factor e`. This new form
attenuates higher order Legendre coe�cients to ensure a positive-de�nite phase
function and remove the forward peak.

The method developed here results in a much more robust means of obtaining an
optimal approximate phase function including the forward scattering correction,
while simultaneously avoiding the problems inherent with negative phase
function predictions. Chapter 3 illustrated that these new techniques produce
better ux predictions than the �-M technique of Wiscombe.

In treating scattering problems, once an order of expansion has been chosen
for a simulation, the phase function properties can be preprocessed to derive
appropriate f , %, and e values that lead to modi�cations to the extinction
coe�cient �, the single scattering albedo $ and the modi�ed Legendre
coe�cients c` that describe that aerosol.
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NCAR LIBRARY SERIALS 1
NATL CTR FOR ATMOS RSCH
PO BOX 3000
BOULDER CO 80307-3000

DEPT OF COMMERCE CTR 1
325 S BROADWAY
BOULDER CO 80303

DAMI POI 1
WASHINGTON DC 20310-1067

MIL ASST FOR ENV SCI OFC 1
OF THE UNDERSEC OF DEFNS
FOR RSCH & ENGR R&AT E LS
PENTAGON ROOM 3D129
WASHINGTON DC 20301-3080

ARMY INFANTRY 1
ATSH CD CS OR
ATTN DR E DUTOIT
FT BENNING GA 30905-5090

AIR WEATHER SERVICE 1
TECH LIBRARY FL4414 3
SCOTT AFB IL 62225-5458

USAFETAC DNE 1
ATTN MR GLAUBER
SCOTT AFB IL 62225-5008

HQ AWS DOO 1 1
SCOTT AFB IL 62225-5008

PHILLIPS LABORATORY 1
PL LYP
ATTN MR CHISHOLM
HANSCOM AFB MA 01731-5000
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ATMOSPHERIC SCI DIV 1
GEOPHYISCS DIRCTRT
PHILLIPS LABORATORY
HANSCOM AFB MA 01731-5000

PHILLIPS LABORATORY 1
PL LYP 3
HANSCOM AFB MA 01731-5000

ARMY MATERIEL SYST 1
ANALYSIS ACTIVITY
AMXSY
ATTN MR H COHEN
APG MD 21005-5071

ARMY MATERIEL SYST 1
ANALYSIS ACTIVITY
AMXSY AT
ATTN MR CAMPBELL
APG MD 21005-5071

ARMY MATERIEL SYST 1
ANALYSIS ACTIVITY
AMXSY CR
ATTN MR MARCHET
APG MD 21005-5071

ARL CHEMICAL BIOLOGY 1
NUC EFFECTS DIV
AMSRL SL CO
APG MD 21010-5423

ARMY MATERIEL SYST 1
ANALYSIS ACTIVITY
AMSXY
APG MD 21005-5071

ARMY RESEARCH LABORATORY 1
AMSRL D
2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

ARMY RESEARCH LABORATORY 1
AMSRL OP SD TP
TECHNICAL PUBLISHING
2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

ARMY RESEARCH LABORATORY 1
AMSRL OP CI SD TL
2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

ARMY RESEARCH LABORATORY 1
AMSRL SS SH
ATTN DR SZTANKAY
2800 POWDER MILL ROAD
ADELPHI MD 20783-1145
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ARMY RESEARCH LABORATORY 1
AMSRL
2800 POWDER MILL ROAD
ADELPHI MD 20783-1145

NATIONAL SECURITY AGCY W21 1
ATTN DR LONGBOTHUM
9800 SAVAGE ROAD
FT GEORGE G MEADE MD 20755-6000

ARMY RSRC OFC 1
ATTN AMXRO GS (DR BACH)
PO BOX 12211
RTP NC 27009

DR JERRY DAVIS 1
NCSU
PO BOX 8208
RALEIGH NC 27650-8208

US ARMY CECRL 1
CECRL GP
ATTN DR DETSCH
HANOVER NH 03755-1290

ARMY ARDEC 1
SMCAR IMI I BLDG 59
DOVER NJ 07806-5000

ARMY COMMUNICATIONS 1
ELECTR CTR FOR EW RSTA
AMSEL EW D
FT MONMOUTH NJ 07703-5303

ARMY COMMUNICATIONS 1
ELECTR CTR FOR EW RSTA
AMSEL EW MD
FT MONMOUTH NJ 07703-5303

ARMY DUGWAY PROVING GRD 1
STEDP MT DA L 3
DUGWAY UT 84022-5000

ARMY DUGWAY PROVING GRD 1
STEDP MT M
ATTN MR BOWERS
DUGWAY UT 84022-5000

PL WE 1
KIRTLAND AFB NM 87118-6008

USAF ROME LAB TECH 1
CORRIDOR W STE 262 RL SUL
26 ELECTR PKWY BLD 106
GRIFFISS AFB NY 13441-4514

AFMC DOW 1
WRIGHT PATTERSON AFB OH 45433-5000
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ARMY FIELD ARTILLERY SCHOOL 1
ATSF TSM TA
FT SILL OK 73503-5600

NAVAL AIR DEV CTR 1
CODE 5012
ATTN AL SALIK
WARMINISTER PA 18974

ARMY FOREIGN SCI TECH CTR 1
CM
220 7TH STREET NE
CHARLOTTESVILLE VA 22448-5000

NAVAL SURFACE WEAPONS CTR 1
CODE G63
DAHLGREN VA 22448-5000

ARMY OEC 1
CSTE EFS
PARK CENTER IV
4501 FORD AVE
ALEXANDRIA VA 22302-1458

ARMY CORPS OF ENGRS 1
ENGR TOPOGRAPHICS LAB
ETL GS LB
FT BELVOIR VA 22060

ARMY TOPO ENGR CTR 1
CETEC ZC 1
FT BELVOIR VA 22060-5546

SCIENCE AND TECHNOLOGY CORP 1
101 RESEARCH DRIVE
HAMPTON VA 23666-1340

ARMY NUCLEAR CML AGCY 1
MONA ZB BLDG 2073
SPRINGFIELD VA 22150-3198

USATRADOC 1
ATCD FA
FT MONROE VA 23651-5170

ARMY TRADOC ANALYSIS CTR 1
ATRC WSS R
WSMR NM 88002-5502

ARMY RESEARCH LABORATORY 1
AMSRL IS EW
BATTLEFIELD ENVIR DIV
WSMR NM 88002-5501

ARMY RESEARCH LABORATORY 1
AMSRL IS ES
BATTLEFIELD ENVIR DIV
ADELPHI MD 20783-1145

127



DTIC 1
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOIR VA 22060-6218

ARMY MISSILE CMND 1
AMSMI
REDSTONE ARSENAL AL 35898-5243

ARMY DUGWAY PROVING GRD 1
STEDP3
DUGWAY UT 84022-5000

USTRADOC 1
ATCD FA
FT MONROE VA 23651-5170

WSMR TECH LIBRARY BR 1
STEWS IM IT
WSMR NM 88002

US MILITARY ACADEMY 1
MATHEMATICAL SCI CTR EXCELLENCE
DEPT OF MATHEMATICAL SCIENCES
ATTN MDN A (MAJ DON ENGEN)
THAYER HALL
WEST POINT NY 10996-1786

ARMY RESEARCH LABORATORY 15
ATTN D TOFSTED
AMSRL IS EW
BATTLEFIELD ENVIR DIV
WSMR NM 88002-5501

Record Copy 1

TOTAL 83
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